EFFECTS OF RADIATION ON MATERIALS:
21st International Symposium

TECHNICAL EDITORS:
Martin L. Grossbeck, Todd R. Allen,
Randy G. Lott, Arvind S. Kumar

STP 1447
Effects of Radiation on Materials

Martin L. Grossbeck, Todd R. Allen, Randy G. Lott, and Arvind S. Kumar, editors

ASTM Stock Number: STP1447
Foreword

The Symposium on *Effects of Radiation on Materials* was held in Tucson, Arizona on 18–20 June 2002. ASTM International Committee E10 on Nuclear Technology and Applications served as sponsor. Symposium chairmen and co-editors of this publication were Martin L. Grossbeck, University of Tennessee, formerly at Oak Ridge National Laboratory; Todd R. Allen, University of Wisconsin, formerly at Argonne National Laboratory-West; Randy G. Lott, Westinghouse Electric Company; and Arvind S. Kumar, University of Missouri, Rolla.
The nuclear materials community lost one of its most active and dedicated scientists with the death of Wolfgang Schule. Dr. Schule contributed to the ASTM Radiation Effects on Materials Symposia for over 20 years. His research on radiation effects in metals covered many areas including mechanical properties, precipitation, phase stability, and radiation-produced defects. He served as a faculty member at Johann Wolfgang Goethe-University, as a scientist at both the Max-Planck-Institut für Metallforschung and at the Joint Research Centre, Ispra. Additionally, he was a visiting scientist at the Oak Ridge National Laboratory. His keen interest in students led to advising 25 Ph.D. theses over thirty years. Wolfgang had an intense passion for science and enjoyed the controversy involved with the exchange of differing points of view. Approaching his hobbies with the same enthusiasm that he applied to his work, Wolfgang enjoyed art and mechanical devices; he was comfortable as both an engineer and a scientist. For all of us who knew him, he was always dynamic and personable. Many of us will remember him not only as a scientist but also as a friend. Indeed, he will be missed.
Participants in the E10 21st Symposium on the Effects of Radiation on Materials
Contents

OVERVIEW xiii

AUSTENITIC STAINLESS STEELS

Properties of 20% Cold-Worked 316 Stainless Steel Irradiated at Low Dose Rate—T. R. ALLEN, H. TSAI, J. I. COLE, J. OHTA, K. DOHI, AND H. KUSANAGI 3

Study on Ductile Fracture Strain and Fracture Toughness of Irradiated Austenitic Stainless Steels—S. NISHIMURA, H. SAKAMOTO, AND T. KATO 15

Investigation of Microstructure and Mechanical Properties of 18Cr-10Ni-Ti Steel Irradiated in the Core of VVER-1000 Reactor—V. S. NEUSTROEV, V. G. DVORETZKY, Z. E. OSTROVSKY, V. K. SHAMARDIN, AND G. A. SHIMANSKY 32

The Role of Fine Defect Clusters in Irradiation-Assisted Stress Corrosion Cracking of Proton-Irradiated 304 Stainless Steel—J. T. BUSBY, M. M. SOWA, G. S. WAS, AND E. A. KENIK 78

The Effect of Hardening Source in Proton Irradiation-Assisted Stress Corrosion Cracking of Cold Worked Type 304 Stainless Steel—M. C. HASH, J. T. BUSBY, AND G. S. WAS 92

Martensitic Transformations in Neutron Irradiated and Helium Implanted Stainless Steels—K. K. KADYRZHANOVD AND O. P. MAKSIMKIN 105
PRESSURE VESSEL STEELS—PROPERTIES AND MECHANISMS

Fracture Toughness and Atom Probe Characterization of a Highly Embrittled RPV Weld—M. A. SOKOLOV, R. K. NANSTAD, AND M. K. MILLER 123

Evaluation of Irradiation Embrittlement of A508 Gr 4N and Comparison to Other Low-Alloy Steels—G. L. WIRE, W. J. BEGGS, AND T. R. LEAX 179

Microstructural Aspects of Irradiation Damage in A508 Gr 4N Forging Steel: Composition and Flux Effects—M. G. BURKE, R. J. STOFANAK, J. M. HYDE, C. A. ENGLISH, AND W. L. SERVER 194

Effect of Stress Relief Time on the Transition Temperature of Linde 80 Welds—J. B. HALL AND K. K. YOON 208

PRESSURE VESSEL STEELS—ANALYSIS AND PREDICTION

A Mechanistically Guided Charpy Embrittlement Correlation for Reactor Pressure Vessel Integrity Assessment—S. T. ROSINSKI, W. L. SERVER, AND R. G. LOTT 247

Development of RPV Embrittlement Evaluation Technology for Charpy Upper Shelf Region—S. HATANO, K. SAKAMOTO, AND T. OSAKI 266

Master Curve of Irradiated JRQ Material—M. SERRANO, F. J. PEROSANZ, AND J. LAPENA 277

The Effect of Neutron Flux on Radiation-Induced Embrittlement in Reactor Pressure Vessel Steels—R. E. STOLLER 326
CONTENTS ix

FERRITIC STEELS—MODEL AND LOW ACTIVATION ALLOYS

Hardening Mechanisms in Ferritic/Martensitic Steels—N. BALUC, R SCHÄUBLIN, P. SPÄTIG, AND M. VICTORIA 341

Effect of Heat Treatment and Tantalum on Microstructure and Mechanical Properties of Fe-9Cr-2W-0.25V Steel—R. L. KLUEH, N. NASHIMOTO, AND M. A. SOKOLOV 376

Oxide Particle Stability in Oxide Dispersion Strengthened Ferritic Steels During Neutron Irradiation—S. YAMASHITA, K. OKA, T. YOSHITAKE, N. AKASAKA, S. UKAI, AND S. OHNUKI 391

Examination of Postirradiation Deformation Microstructures in F82H—D. S. GELLES AND R. SCHÄUBLIN 401

Fracture Toughness Characterization of Irradiated F82H in the Transition Region—M. A. SOKOLOV, R. L. KLUEH, G. R. ODETTE, K. SHIBA, AND H. TANIGAWA 408

SWELLING AND IRRADIATION CREEP

Incubation Period for Void Swelling and Its Dependence on Temperature, Dose Rate, and Dislocation Structure Evolution—M. P. SURH, J. B. STURGEON, AND W. G. WOLFER 419

Dependence of Maximum Swelling Temperature on Damage Dose in Cold Worked 16Cr-15Ni-2Mo-1Mn Cladding Irradiated in BN-600—A. V. KOZLOV, I. A. PORTNYKH, S. V. BRYUSHKOVA, AND E. A. KNEV 446

Stress and Temperature Dependence of Irradiation Creep of Selected FCC and BCC Steels at Low Swelling—M. B. TOLOCZKO AND F. A. GARNER 454

RADIATION EFFECTS

Kinetics of Helium Bubble Formation in Nuclear and Structural Materials—C. M. SCHALDACH AND W. G. WOLFER 479

Fatigue Response and Life Prediction of Selected Reactor Materials—M. LI AND J. F. STUBBINS 502

The Influence of Pre-Irradiation Heat Treatments on Thermal Non-Equilibrium and Radiation-Induced Segregation Behavior in Model Austenitic Stainless Steel Alloys—J. I. COLE, T. R. ALLEN, G. S. WAS, R. B. DROPEK, AND E. A. KENK 540

Inter-Granular Phosphorus Segregation in Ferritic Steels—R. G. FAULKNER, P. E. J. FLEWITT, AND Z. LU 553

The Modeling of Radiation-Induced Phosphorus Segregation at Point Defect Sinks in Dilute Fe-P Alloys—I. A. STEPANOV, V. A. PECHENKIN, AND Y. V. KONOBEEV 579

Irradiation Induced Vacancy-Cu Aggregations in Fe-Cu Model Alloys of Reactor Pressure Vessel Steels Studied by Positron Annihilation—Y. NAGAI, K. TAKADATE, Z. TANG, H. OHKUBO, AND M. HASEGAWA 590

Measurement Techniques and Modeling Studies

Heavy Ion Fluence Measurements Based on Radiation Effects Generated in CTA Foils—Z. PEIMEL-STUGLIK AND V. A. SKURATOV 605

Tensile Property Estimates Obtained Using a Low Compliance Shear Punch Test Fixture—M. B. TOLOCZKO, R. J. KURTZ, K. ABE, AND A. HASEGAWA 612

Revisiting the Use of SiC as a Post Irradiation Temperature Monitor—L. L. SNEAD, A. M. WILLIAMS, AND A. L. QUALLS 623

New Methodologies for Developing Radiation Embrittlement Models and Trend Curves of the Charpy Impact Test Data—J. A. WANG AND N. S. V. RAO 634
CONTENTS xi

CERAMIC MATERIALS

Mechanical and Structural Property Changes of Monolithic SiC and Advanced SiC/SiC Composites due to Low Temperature He⁺-ion Irradiation and Post-irradiation High Temperature Annealing—S. NOGAMI, S. MIWA, A. HASEGAWA, AND K. ABE 655

VANADIUM ALLOYS

Changes in Mechanical Properties of High-Purity V-4Cr-4Ti-Si, Al, Y Alloys After Neutron Irradiation at Relatively Low Temperatures—T. CHUTO, M. SATOU, A. HASEGAWA, K. ABE, T. MUROGA, AND N. YAMAMOTO 693

Creep Deformation in V-4Cr-4Ti in a Low Oxygen Lithium Environment—M. L. GROSSBECK 702

Varying Temperature Irradiation Effects of V-4Cr-4Ti Alloy with Small Addition of Si, Al, and Y—M. SATOU, H. NAKAYASHIKI, T. CHUTO, A. HASEGAWA, AND K. ABE 714

ZIRCONIUM AND COPPER ALLOYS

Microstructure Response in Copper and Copper Alloys Irradiated with Fission Neutrons and Controlled Temperature Variations—T. MUROGA, AND H. WATANABE 753

Index 765
Overview

Selected papers from the 21st Symposium on the Effects of Radiation on Materials are published in this volume. That symposium, sponsored by ASTM Committee E-10 on Nuclear Technology and Applications, was held in Tucson, Arizona, on June 18–20, 2002. Martin L. Grossbeck, then at the Oak Ridge National Laboratory and now at the University of Tennessee, chaired the meeting. Co-chairmen were Todd R. Allen, then at Argonne National Laboratory-West and now at the University of Wisconsin; Randy G. Lott, Westinghouse Electric Company; and Arvind S. Kumar, University of Missouri-Rolla.

This symposium series began in 1956 with a meeting sponsored jointly by E-10, then the Committee on Radioisotopes and Radiation Effects, and the Atomic Industrial Forum. The symposia in the present form, sponsored by Committee E-10, began in 1960 and became international in 1963 with the presentation of 5 papers of the total of 18 from laboratories outside the United States. At the current meeting, of the 96 papers presented (59 are published in this volume), 25 came from sources outside the United States. The editors are proud that the symposium was a truly international meeting which presented state of the art research in nuclear materials from around the world.

The symposium began with an invited plenary lecture given by Theodore U. Marston, Vice President of the Nuclear Power Sector of the Electric Power Research Institute. Dr. Marston presented an overview of the current and future reactors and their materials requirements. Renewed emphasis in austenitic stainless steels was reflected in the strength of papers presented in this area. This class of alloys is again being considered for fuel cladding in advanced reactors. In addition, stainless steels are studied as model alloys for radiation effects on diffusion, elemental segregation and formation of radiation-induced phases. Reduced neutron activation for fusion reactor structural materials has spurred interest in vanadium alloys and ferritic steels designed for reduced neutron activation. Of special interest is the discovery that such steels can be made without sacrifice of properties. On the contrary, new research has led to the development of reduced activation steels with enhanced irradiation properties over previously used alloys. Research efforts continue in the area of ceramic and composite materials for advanced structural applications and for waste encapsulation.

Even though very significant and interesting progress was reported on a myriad of materials, the primary focus of the symposium remains pressure vessel steels, with a total of 35 presentations, 21 of which are included in these proceedings. In addition to dedicated sessions on the mechanical properties, fracture toughness, and microstructure of irradiated reactor pressure steels, numerous papers on related subjects were integrated into the remaining conference sessions on fundamental mechanisms. A related session on studies in model alloys also contained valuable information about radiation effects in a variety of Fe-Cu alloys. The increasing sophistication of microstructural examination techniques such as positron annihilation and atom probe tomography has revealed much detail about the radiation induced features that cause embrittlement in these steels. New embrittlement prediction curves based on the knowledge gained from the microstructural studies have been developed and are being refined for eventual use in reactor pressure vessel integrity analysis. Increased understanding of the primary irradiation effects in these steels has made it possible to look more closely at the secondary effects, such as pre-irradiation stress relief, thermal neutron embrittlement, and dose rate effects. The recent adop-
tion of the ASTM E1921, Standard Test Method for Determination of Reference Temperature, T_o, for Ferritic Steels in the Transition Range, has provided a valuable new tool for the characterization of reactor pressure vessel materials.

The international participation in this symposium is indicative of the established benefit of this symposium series to the radiation effects community. This series of symposia will continue to evolve to best support the needs of the community. In keeping with this evolution, this volume will be the last Special Technical Publication for this symposium series. The proceedings of the twenty-second symposium will be part of a new journal published by ASTM, the Journal of ASTM International. In this way, the quality of the extensive peer review process can be maintained with timely publication of symposium papers as they are ready.

The editors wish to express our gratitude to all of the reviewers, without whom maintaining the quality of this publication would not be possible, and to all symposium participants.

Martin L. Grossbeck
University of Tennessee
Knoxville, Tennessee
Symposium Chair and Editor

Todd R. Allen
University of Wisconsin
Madison, Wisconsin
Formerly at Argonne National Laboratory-West
Symposium Co-Chair and Editor

Randy G. Lott
Westinghouse Electric Company
Pittsburgh, Pennsylvania
Symposium Co-Chair and Editor

Arvind S. Kumar
University of Missouri Rolla
Rolla, Missouri
Symposium Co-Chair and Editor