CROSSTUTED AND THERMALLY TREATED ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE FOR JOINT REPLACEMENTS

STP 1445

EDITORS
Steven M. Kurtz,
Ray A. Gsell, John Martell

ASTM INTERNATIONAL
Standards Worldwide
Foreword

The Symposium on Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene (UHMWPE) for Joint Replacements was held in Miami Beach, Florida on 5–6 November, 2002. ASTM International Committee F04 on Medical and Surgical Materials and Devices served as the sponsor. Symposium co-chairmen and co-editors of this publication were Steven Kurtz, Exponent, Inc., Philadelphia, PA; Ray Gsell, Zimmer, Inc., Warsaw, IN; and John Martell, University of Chicago, Chicago, IL.
Contents

FOREWORD iii

QUANTIFYING CLINICAL RESPONSE


SHORT-TERM RETRIEVALS


Retrieval Analysis of Cross-Linked Acetabular Bearings—J. P. COLLIER, M.B MAYOR, B. H. CURRIER, AND M. W. WITTMAN 32

Assessment of Surface Roughness and Waviness Using White Light Interferometry for Short-Term Implanted, Highly Crosslinked Acetabular Components—S. M. KURTZ, J. TURNER, M. HERR, A. A. EDIDIN, AND C. M. RIMNAC 41

CROSSLINKED PE IN KNEES: IS IT SAFE?


The Effect of Crosslinking UHMWPE on In Vitro Wear Rates of Fixed and Mobile Bearing Knees—D. E. McNULTY, S. W. SWOPE, D. D. AUGER, AND T. SMITH 73

The Sensitivity of Crosslinked UHMWPE to Abrasive Wear: Hips versus Knees—V. D. GOOD, K. WIDDING, M. SCOTT, AND S. JAN 104

Multiaxial Fatigue Behavior of Oxidized and Unoxidized UHMWPE During Cyclic Small Punch Testing at Body Temperature—M. L. VILLARRAGA, A. A. EDIDIN, M. HERR, AND S. M. KURTZ 117

The Effect of Reduced Fracture Toughness on Pitting and Delamination Type Wear of Elevated Cross-Linked Polyethylene—S. A. MAHER, B. D. FURMAN, AND T. M. WRIGHT 137

Wear and Structural Fatigue Simulation of Crosslinked Ultra-High Molecular Weight Polyethylene For Hip and Knee Bearing Applications—A. WANG, M. MANLEY, AND P. SEREKIAN 151

MECHANICAL PROPERTIES


The Flow Ratio Effect on Oriented, Crosslinked Ultra-High Molecular Weight Polyethylene (UHMWPE)—R. S. KING, S. K. YOUNG, AND K. W. GREER 183

The Effect of Specimen Thickness on the Mechanical Behavior of UHMWPE Characterized by the Small Punch Test—S. M. KURTZ, M. HERR, AND A. A. EDIDIN 192

IN-VITRO TESTING

The Effects of Raw Material, Irradiation Dose, and Irradiation Source on Crosslinking of UHMWPE—K. W. GREER, R. S. KING, AND F. W. CHAN 209


Elevated Crosslinking Alone Does Not Explain Polyethylene Wear Resistance—B. D. FURMAN, S. A. MAHER, T. G. MORGAN, AND T. M. WRIGHT 248

Index 263