Effects of Radiation on Materials: 19th International Symposium

Margaret L. Hamilton, Arvind S. Kumar, Stan T. Rosinski, and Martin L. Grossbeck, editors

ASTM Stock Number: STP1366

ASTM
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959

Printed in the U.S.A.
Foreword

This publication, *Effects of Radiation on Materials: 19th International Symposium*, contains papers presented at the symposium of the same name held in Seattle, Washington on 16–18 June 1998. The symposium was sponsored by ASTM Committee E10 on Nuclear Technology and Applications. The symposium chairman was Margaret L. Hamilton, Pacific Northwest Laboratory. Arvind S. Kumar, University of Missouri-Rolla, Stan T. Rosinski, Electric Power Research Institute, and Martin L. Grossbeck, Oak Ridge National Laboratory, served as co-chairmen.

Of the various nuclear-oriented symposia, this series is the oldest and most comprehensive. The first symposium with the current name was held in 1960 but grew out of an earlier series that was initiated in 1956 by Committee E10, then called the Committee on Radioisotopes and Radiation Effects.

This 19th international symposium continues the tradition of earlier symposia in that there is a large contribution from the international nuclear community, with a significant increase from countries of the former Soviet Union. As is typical of this series, the largest segment of papers is devoted to pressure vessel embrittlement and its mitigation. Smaller segments address issues of continuing interest in light water reactors, fusion reactors, and to a lesser extent, breeder reactors. These issues are presented in separate sections devoted to classes of materials.

Several emerging issues are addressed in some papers, for example, reduced activation, welding of irradiated materials, and damage resulting from high-energy proton beams in accelerator-driven nuclear systems. It is the expectation of the leaders of this symposium that this publication will continue to reflect the emerging concerns of the nuclear materials community as we proceed into the twenty-first century.
Contents

PRESSURE VESSEL STEELS—MECHANICAL PROPERTIES

A Comparison of East/West Steels for Pressurized Water Reactors—
M. Davies, A. Kryukov, C. English, Y. Nikolaev, and W. L. Server

Exploratory Test of 288°C Radiation Resistance of Two USSR-Produced
Reactor Pressure Vessel Steels—J. R. Hawthorne, M. A. Sokolov, and
W. L. Server

Analysis of Irradiation Data for A302B and A533B Correlation Monitor
Materials—J. A. Wang

Comparison of Static and Dynamic Transition Temperature Shifts in VVER
Reactor Pressure Vessel Steels—M. Brumovsky, M. Falcnik, M. Kytko,
J. Malek, and P. Novosad

Effect of Radiation on Material Used for 600MW Chinese Nuclear Power
Plant Reactor Pressure Vessel—X. Jia, Y. Xu, W. Yang, and C. Zhang

Comparison of Fracture Toughness of Irradiated Reactor Vessel Welds—
Predicted by ASTM E 900 and Measured—K. K. Yoon and
W. A. Pavinich

Neutron Spectrum Effect and Damage Analysis on Pressure Vessel Steel
Irradiation Behaviour—C. Pichon, C. Brillaud, D. Deydier, A. Alberman,
and P. Soulat

Characterization of the Decommissioned Novovoronesh-1 Pressure Vessel Wall
Materials by Through-Wall Trepans—M. J. Valo, A. D. Amaev,
R. Ahlstrand, D. A. Chistiakov, E. Krasikov, A. Kryukov, A. M. Morosov,
V. A. Nikolaev, P. Platov, R. Rintamäki, V. V. Rybin, Y. Shtrombakh,
and K. Wallin

The Effects of Flux on Radiation Embrittlement of Low-Copper Pressure
Vessel Steels—Y. Xu, X. Jia, C. Zhang, G. Ning, and Q. Yu

Technical Basis for Application of the Master Curve Approach to Reactor
Pressure Vessel Integrity Assessment—W. L. Server and S. T. Rosinski
Bias and Precision of T_c Values Determined Using ASTM Standard E 1921-97 for Nuclear Reactor Pressure Vessel Steels—M. KIRK, R. LOTT, W. L. SERVER, R. HARDIES, AND S. ROSINSKI

Fracture Toughness of the Ni-Modified A302-B Plate of the BR3 Reactor Pressure Vessel—R. CHAOUADI, A. FABRY, E. VAN WALLE, AND J. VAN DE VELDE

Application of Master Curve Technology to Biaxial and Shallow Crack Fracture Data For A533B Steels—J. A. JOYCE, R. L. TREGONING, AND X. J. ZHANG

Effect of Irradiation on Fracture Toughness in the Transition Range of RPV Steels—K. ONIZAWA, T. TOBITA, AND M. SUZUKI

Supplementary Surveillance Program for Reactor Pressure Vessels of VVER-440/V-213C Type Reactors in NPP Dukovany—M. BRUMOVSKY, O. ERBEN, AND P. NOVOSAD

PRESSURE VESSEL WELDS—MECHANICAL PROPERTIES

Irradiation Behavior of Submerged Arc Welding Materials with Different Copper Content—R. LANGER, R. BARTSCH, AND G. NAGEL

Effect of Location of V-Notch on Neutron Irradiation-Induced Shift in DBTT of HAZ of Welded Pressure Vessel Steel—T. SUZUKI, K. ITOH, Y. NARUSE, H. MATSUI, AND A. KIMURA

Fracture Toughness Test Results of Precracked Charpy Specimens of Irradiated 73W Weld Material—R. CHAOUADI, E. VAN WALLE, A. FABRY, M. SCIBETTA, AND J. VAN DE VELDE

Fracture Toughness of Submerged-Arc Weld Samples from a Decommissioned Magnox Reactor Pressure Vessel: Initial Results—P. J. E. BISCHLER, M. R. WOOTTON, AND C. J. BOLTON

Effects of Irradiation and Thermal Annealing on Fracture Toughness of the Midland Reactor Weld WF-70—D. E. MCCABE, R. K. NANSTAD, AND M. A. SOKOLOV
PRESSURE VESSEL STEELS—SEGREGATION AND MICROSTRUCTURE

Irradiation Damage Structure in VVER-440 Steels after Irradiation at Different Temperatures and Post-Irradiation Annealing—M. GROGSE AND J. BÖHMERT 323

Grain Boundary Phosphorus Segregation under Neutron Irradiation and Aging in 2.25Cr1Mo Steel—S. SONG, R. G. FAULKNER, P. E. J. FLEWITT, P. MARMY, AND M. VICTORIA 343

Microstructure of the Neutron Irradiated VVER-type Reactor Pressure Vessel Steels—J. KOČÍK, E. KEILOVÁ, I. PROCHÁZKA, AND J. ČÍJEK 354

Influence of Thermal Neutrons on the Hardening and Embrittlement of Plate Steels—R. B. JONES, D. J. EDENS, AND M. R. WOOTTON 366

Radiation-Induced Grain Boundary Segregation of Phosphorus in ASME SA533B Ferritic Pressure Vessel Steel—D. MEADE, R. G. FAULKNER, AND D. ELLIS 383

Comparison of Observed and Predicted Data on Radiation Induced Grain Boundary Phosphorus Segregation in VVER Type Steels—A. V. NIKOLAEVA, Y. R. KEVORKYAN, AND Y. A. NIKOLAEV 399

FERRITIC AND FERRITIC/MARTENSITIC STEELS—ANNEALING AND REIRRADIATION BEHAVIOR

Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels—M. A. SOKOLOV, A. A. CHERNOBAEVA, R. K. NANSTAD, Y. A. NIKOLAEV, AND Y. N. KOROLEV 415

Two-Step Recovery Process of Irradiation Hardening in 1%Ni Doped 9%Cr-2% W Martensitic Steel—R. KASADA, T. MORIMURA, H. MATSUI, M. NARUI, AND A. KIMURA 448

Application of the Floating Curve Model for Estimation of Rc-Irradiation Embrittlement of VVER-440 RPV Steels—Y. NIKOLAEV AND A. V. NIKOLAEVA 460
IRRADIATION-INDUCED BEHAVIOR OF IRON, MODEL ALLOYS, AND FERRITIC/MARTENSITIC ALLOYS

Embrittlement, Hardening, and Grain Boundary Composition in an Fe-P-C Alloy after Irradiation or Thermal Aging—R. B. JONES, J. R. COWAN, R. C. CORCORAN, AND J. C. WALMSLEY 473

Microstructure and Hardening in Thermally Aged and Neutron-Irradiated Fe-Cu Model Alloy—H. KAWANISHI AND M. SUZUKI 492

Neutron Irradiation Rate Dependence of Damage Structures in Fe-Cu Model Alloys—S. YANAGITA, Q. XU, T. YOSHIIE, AND H. INO 516

Gamma-Radiation Annealing to Mitigate Neutron-Induced Degradation of Both Model and Structural Reactor Materials—V. I. KARPUKHIN, Y. A. KRASIKOV, V. A. NIKALENKO, AND Y. I. SHTROMBAKH 525

Analysis of Stress-Induced Burgers Vector Anisotropy in Pressurized Tube Specimens of Irradiated Ferritic-Martensitic Steels: JFMS and JLF-1—D. S. GELLES, A. KIMURA, AND T. SHIBAYAMA 535

An Evaluation of Neutron Energy Spectrum Effects in Iron Based on Molecular Dynamics Displacement Cascade Simulations—R. E. STOLLER AND L. R. GREENWOOD 548

Irradiation Behavior of Ferritic-Martensitic 9-12% Cr Steels—M. G. HORSTEN, E. V. VAN OSCH, D. S. GELLES, AND M. L. HAMILTON 579

LOW ACTIVATION FERRITIC/MARTENSITIC ALLOYS

Mechanical Properties and Microstructure of HFR-Irradiated Ferritic/Martensitic Low-Activation Alloys—E. I. MATERNA-MORRIS, M. RIETH, AND K. EHRLICH 597

Mechanical Properties of Four 7-9% Cr Reduced Activation Martensitic Steels after 2.5 dpa, 300°C Irradiation—E. VAN OSCH, M. HORSTEN, G. E. LUCAS, AND G. R. ODETTE 612

IRRADIATION CREEP AND THE CREEP-SWELLING RELATIONSHIP

Irradiation Creep of Austenitic Steels Irradiated Up to High Damage Dose—
V. S. NEUSTROEV AND V. K. SHAMARDIN 645

Reanalysis of Swelling and Irradiation Creep Data on 316 Type Stainless Steels Irradiated in the FFTF and Phénix Fast Reactors—
M. B. TOLOCZKO AND F. A. GARNER 655

The Relationship Between Swelling and Irradiation Creep in 20% Cold-Worked 316 Stainless Steel—F. A. GARNER, M. B. TOLOCZKO, AND R. J. PUIGH 667

Effects of Impurity on Radiation Creep Rate of the Interstitial Solid Solutions—A. D. LOPUGA AND Y. S. PYATILETOV 688

Creep-Fatigue Response of 20% CW 316 SS Under Irradiation at 60°C—
Y. MURASE, J. NAGAKAWA, N. YAMAMOTO, AND Y. FUKUZAWA 713

In-Reactor Creep Regularities of Copper—E. S. AITKHOZHIN, Y. S. PYATILETOV, AND E. V. CHUMAKOV 725

AUSTENITIC ALLOYS—IRRADIATION-INDUCED SWELLING, SEGREGATION AND MICROSTRUCTURE

Effect of IVa and Va Elements on Void Formation in Neutron-Irradiated 316 Stainless Steels—S. OHNUKI, S. YAMASHITA, H. TAKAHASHI, AND T. KATO 756

The Question of Saturation of Void Swelling in Fe-Cr-Ni Austenitic Alloys—F. A. GARNER AND C. A. BLACK 767

Influence of Minor Alloying Elements and Stress on Microstructural Evolution and Void Swelling of Austenitic Steels Under Neutron Irradiation—R. HÜBNER AND K. EHRLICH 778
Temperature-Shift of Void Swelling Observed in Annealed Fe-18Cr-10Ni-Ti Stainless Steel Irradiated in the Reflector Region of BOR-60—

The Effect of Molybdenum on the Grain Boundary Segregation of Chromium Exhibited by Austenitic Stainless Steels after Neutron Irradiation in a BWR—C. C. GOODWIN, R. G. FAULKNER, J. C. WALMSLEY, AND P. SPELLWARD

Microstructure Modeling of a 316L Stainless Steel Irradiated with Electrons—J. HENRY, A. BARBU, AND A. HARDOUIN-DUPARC

Effects of Damage Rate on Formation of Voids and Dislocation Loops in Metals—Q. XU, T. YOSHIIE, AND M. ISEKI

Stress-Affected Dislocation Development of Stainless Steel During Neutron Irradiation—S. I. POROLLO, Y. V. KONOBEV, A. S. KRUGLOV, Y. M. PEVCHIKH, AND F. A. GARNER

Influence of Silicon or Titanium on the Microstructural Evolution of Fe-Cr-35Ni Alloys Irradiated with Neutrons or Self-Ions—H. WATANABE AND F. A. GARNER

Interaction of Void-Induced Phase Instability and Subsequent Void Growth in AISI 304 Stainless Steel—D. L. PORTER, F. A. GARNER, AND G. M. BOND

On the Formation of α-Ferrite in Stainless Steel Alloys—W. SCHÜLE

IRRADIATED STRUCTURAL ALLOYS—WELDING

Thick Plate Welding of Irradiated Stainless Steel—K. ASANO, R. KATSURA, S. KAWANO, AND M. KOSHIISHI

Cracks in TIG Welded, Neutron-Irradiated 304 Stainless Steel—A. KOHYAMA, T. HIROSE, T. SUZUKI, M. NARUI, AND Y. KATOH
Modeling of Helium Bubble Formation During Welding of Irradiated Stainless Steels—T. HASHIMOTO AND M. MOCHIZUKI

Effect of Neutron Irradiation on Mechanical Properties of Cu-Alloy/SS316 Joints—K. TSUCHIYA, M. NAKAMICHI, AND H. KAWAMURA

EXPERIMENTAL TECHNIQUES AND FACILITIES

Neutron-Induced Evolution of Mechanical Properties of 20% Cold-Worked 316 Stainless Steel as Observed in Both Miniature Tensile and TEM Shear Punch Specimens—M. L. HAMILTON, F. A. GARNER, G. L. HANKIN, R. G. FAULKNER, AND M. B. TOLOCZKO

Design of a Dedicated Electron Beam Facility for Material Treatment—J. MITTENDORFER

BERYLLIUM AND CERAMICS

Microstructural Examination of Irradiated Beryllium Pebbles—D. S. GELLES, M. DALLE DONNE, H. KAWAMURA, S. OHNUKI, AND F. SCAFFIDI-ARGENTINA

In-situ Electrical Resistivity Measurement of MgO-Al₂O₃ Coating under Neutron Irradiation—M. NAKAMICHI AND H. KAWAMURA

Effect of Ionizing and Displacive Components of Irradiation on the Structural Transformations in Pyrolitic Boron Nitride Ceramics—V. A. STEPANOV, P. A. STEPANOV, V. M. CHERNOV, A. V. GOLOVINOV, AND L. M. KRYUKOVA
OTHER MATERIALS

Effect of Irradiation on Structural Materials in Fusion Reactors—
F. TAVASSOLI, H. BURLET, A. LIND, B. N. SINGH, S. TÄHTINEN, AND
E. VAN OSCH 1093

Helium/Hydrogen Measurements in High-Energy Proton-Irradiated
Tungsten—B. M. OLIVER, M. L. HAMILTON, F. A. GARNER, W. F. SOMMER,
S. A. MALOY, AND P. D. FERGUSON 1109

Amorphization of Solids Irradiated by Fast Neutrons—V. D. PARKHOMENKO,
S. F. DUBININ, S. G. TEPLOUKHOV, AND B. N. GOSCHITSKII 1122

Effects of Fast Neutron Irradiation at 80K on Titanium Nickelide—
S. F. DUBININ, V. D. PARKHOMENKO, AND S. G. TEPLOUKHOV 1131

Irradiation Aging of Aluminum Alloys—F. GILLEMOT, L. GILLEMOT, AND G. URI 1137

Effect of Ion-Irradiation on Phase Transformation in TiNi Shape Memory
Alloys—Y. MATSUKAWA, Y. SUMITA, S. OHNUKI, S. WATANABE, C. NAMBA,
AND H. TAKAHASHI 1147

Irradiation Growth of Zirconium Alloys at High Neutron Fluences—
V. K. SHAMARDIN, G. P. KOBYLYANSKY, AND V. M. KOSENKO 1159

Neutron Irradiation Test of Optical Components for Fusion Reactor—
E. ISHITSUKA, H. SAGAWA, A. NAGASHIMA, T. SUGIE, T. NISHITANI,
S. YAMAMOTO, AND H. KAWAMURA 1176

Correlation of Hardening and Microstructure of Tantalum Irradiated with
Heavy Ions—T. MUROGA, K. YASUNAGA, Y. KATOH, H. WATANABE,
N. YOSHIDA, AND N. NODA 1186

Improvement of Post Irradiation Ductility of V-Ti-Cr-Si Type Alloys Neutron
Irradiated Around 400°C—M. SATOU, T. CHUTO, A. HASEGAWA, AND K. ABE 1197

The Influence of Transmutation and Initial Composition on the
Microstructural Evolution of Vanadium and V-Cr-Ti Alloys Irradiated in
HFIR—S. OHNUKI, H. TAKAHASHI, AND F. A. GARNER 1212

Neutron Irradiation Induced High Temperature Embrittlement of Pure
Copper and High Strength Copper Alloys—S. A. FABRITSIEV,
A. S. POKROVSKY, S. J. ZINKLE, AND D. J. EDWARDS 1226

Effect of Neutron Irradiation on Tensile and Fracture Toughness Properties of
Copper Alloys and Their Joints with Stainless Steel—S. J. TÄHTINEN,
M. T. PYYKKÖNEN, B. N. SINGH, AND P. TOFT 1243

Indexes 1261