Performance of Protective Clothing: Fifth Volume

James S. Johnson and S. Z. Mansdorf, Editors

ASTM Publication Code Number (PCN):
04-012370-55

ASTM
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
Printed in the U.S.A.
Foreword

The Fifth International Symposium on Performance of Protective Clothing: Improvement Through Innovation was held 25–27 Jan. 1994 at the San Francisco Hilton and Towers, San Francisco, California. This meeting was sponsored by ASTM Committee F-23 on Protective Clothing and cosponsored by the Institut de Recherche En Santé et en Sécurité du Travail du Quebec.

This symposium was fifth in a series of symposia held to bring together internationally known experts to discuss new developments as well as emerging issues related to worker protection through the use of protective clothing and equipment.

The symposium Chairmen were James S. Johnson, Fission Energy and Systems Safety Program and Hazards Control Department, Lawrence Livermore National Laboratory and S. Z. Mansdorf, Managing Director-Consulting Services, Liberty International. These key individuals also served as editors of this publication.

About the Cover

The cover illustration was provided with permission of the Lawrence Livermore National Laboratory.
Contents

Overview—J. S. JOHNSON AND S. Z. MANSFORD ix

PHYSICAL TEST METHODS FOR PROTECTIVE CLOTHING AND COMPONENTS

Specification of Motorcyclists' Protective Clothing Designed to Reduce Road Surface Impact Injuries—R. I. WOODS 3

Comparison of Two Methods To Evaluate The Resistance of Protective Gloves to Cutting by Sharp Blades—J. LARA, D. TURCOT, R. DAIGLE, AND F. PAYOT 32

Testing of Protective Clothing for Motorcyclists: Validation of Laboratory Tests By Accident Studies—R. I. WOODS 43

Belt Abrader Impact Abrasion Testing of Leathers and Fabrics Used in Motorcycle Riders’ Clothing—R. I. WOODS 57

Factors Influencing the Performance of Chain Saw Leg Protective Devices and its Measurement—J. ARTEAU, J.-F. ARCAND, AND D. TURCOT 70

CHEMICAL AND BIOLOGICAL TEST METHOD DEVELOPMENT AND APPLICATIONS

Evaluation of Health Care Workers’ Apparel Using Microbiological Methods—A. M. PLACENCIA AND J. T. PEELER 103

A Novel Method For Quantification of Surgical Gown Permeability—T. M. WICK AND A. F. FLAHERTY 123

Humidity Considerations For Protective Fabric Evaluation—M. E. CARR, M. A. KOALS, AND M. T. VANDERSALL 131
A Test Method for Measuring Liquid Penetration Through Fibrous Materials—
M. M. HUSSAIN AND J. F. TREMBLAY-LUTTER
142

Effects of Biaxial Tensile Strain on Hydrocarbon Permeability of Butyl Rubber Composite Barriers—B. L. LEE, T. W. YANG, K. D. HASSLER, AND E. WILUSZ
157

PROTECTIVE CLOTHING ISSUES RELATING TO PESTICIDES

Determination of Pesticide Levels As the Result of Cross-Contamination During Laundering—C. MILIKIN, B. G. OAKLAND, AND M. D. HURWITZ
177

Reproducibility of Pesticide Spray Penetration Tests With the UNCG-Clemson Spray Box—S. SUN, B. G. OAKLAND, AND R. B. DODD
188

Solid-State Transition of Pesticide From Protective Clothing To Skin—Y. YANG AND S. LI
200

Barrier Efficiency of Protective Clothing For Atrazine Production Workers—
B. G. OAKLAND, C. J. KIM, D. J. SCHABACKER, AND R. ROSS
210

Chlorpyrifos Decontamination Procedures for Clothing and Equipment—
H. M. PERKINS, K. B. RIGAKIS, M. ARMOUR, E. M. CROWN, AND N. KERR
223

Clothing Contamination Resulting from Greenhouse Spraying of Pesticides—
235

Estimated Costs of Home Laundering Pesticide Contaminated Reusable Clothing—
W. W. OLSON
247

PROTECTIVE CLOTHING TESTING AND EVALUATION

257

269

A Nondestructive Inspection Method to Determine Fatigue in Chemical Protective Suit and Shelter Materials—A. V. BRAY AND J. O. STULL
281

Evaluation of Candidate Glove Liners for Reduction of Skin Maceration in Chemical Protective Gloves—J. F. TREMBLAY-LUTTER, J. Q. LANG, AND D. PICHETTE
296

Methods For Assessing Protective Clothing Effects on Worker Mobility—
P. S. ADAMS AND W. M. KEYSERLING
311
Evaluating the Comfort Performance of Fabrics for Nuclear Protective Apparel—
R. L. BARKER AND B. J. SCRUGGS

Protective Textile Barrier Systems and Their Comfort—I. SHALEV, R. L. BARKER,
S. P. HERSH, S. M. MAINI, B. J. SCRUGGS, V. K. SOOD, A. TOSTI, P. A. TUCKER, AND
G. WU

Evaluation of Clothing Heat Transfer by Dry and Sweating Manikin
Measurements—I. HOLMER, H. NILSSON, AND H. MEINANDER

Functional Fit Evaluation to Determine Optimal Ease Requirements in Chemical
Protective Gloves—J. F. TREMBLAY-LUTTER AND S. J. WEHRER

The Need for Research on Human Factors Regarding Personal Protective Devices
in the Cold Environment—J. D. A. ABYESEKERA AND K. BERGQUIST

Physiological Comparison of Fire Fighter Turnout Suits With and Without A
Microporous Membrane in the Heat—H. MAKINEN, R. ILMARINEN,
B. GRIEFAHN, AND C. KUNEMUND

Development of a Combination Thermal and Chemical Protective Ensemble for
U.S. Navy Fire Fighting Applications—J. O. STULL, M. CONNOR, AND
C. A. HEATH

Decontamination of Fluoropolymer Barrier-Based Chemical Protective Clothing—
M. W. SINOFSKY, J. O. STULL, AND C. R. DODGEN

Evaluating the Effectiveness of Different Laundering Approaches for
Decontamination Structural Fire Fighting Protective Clothing— J. O. STULL,
C. R. DODGEN, M. CONNOR AND R. T. MCCARTHY

PROTECTIVE CLOTHING PROGRAM MANAGEMENT

Concurrent Engineering in the Design of Protective Clothing: Interfacing with
Equipment Design—S. P. ASHDOWN AND S. M. WATKINS

Comfort or Protection: The Clothing Dilemma—K. SLATER

Implementation of the New ASTM F 1461 Practice for a Chemical Protective
Program—S. Z. MANSDORF

Injury Analysis: The Key to Improved Effectiveness of Protective Clothing—
R. M. LAING, C. A. WILSON, AND S. W. MARSHALL

PROTECTIVE CLOTHING STANDARDS AND REGULATIONS

CEN and ISO Standards for Protective Clothing Against Heat and Fire—K. P. JUNG

Developing and Applying a Material Specification for NASA’s Propellant Handlers
Ensemble—J. O. STULL, K. G. THOMPSON, AND N. VAHDI,T
European and International Standards for Protective Clothing and Their Influence on Manufacturing, Trade and Use—T. ZIMMERLI 550

THERMAL TEST METHOD DEVELOPMENT AND APPLICATIONS

The Effect of NOMEX®/KEVLAR® Fiber Blend Ratio and Fabric Weight on Fabric Performance in Static and Dynamic TPP Tests—R. L. BARKER, A. J. GESHURY, AND W. P. BEHNKE 575

A Sensitivity Study of a Variable-Property Skin Burn Model Considering the Variability of Water Content—J. HALIN, J. MULLIGAN, H. HAMOUDA, R. BARKER, AND A. SOROKA 592

The Design of a Surface Heat Flux Transducer For Use In Fabric Thermal Protection Testing—R. GRIMES, J. C. MULLIGAN, H. HAMOUDA, R. BARKER, AND A. J. SOROKA 607

Flammability and Thermal Protection Testing of Long Underwear for Navy and Marine Corps Aircrew Use—T. M. CAPECCI AND C. B. SWAVELY 625

Author Index 635

Subject Index 637
Overview

The Fifth International Symposium on Performance of Protective Clothing Improvement Through Innovation has been a major success like the previous four Committee F-23 Symposia. The experience gained from past symposia was used by the cochairmen to organize this symposium with ample time between sessions for personal interactions with speakers, attendees, professional acquaintances, and friends. An afternoon poster session was also organized to provide time for attendee interaction. To make sure all attendees had a chance to savor the fine food San Francisco is known for, the symposium special event was held at the California Culinary Academy. ASTM Committee F-23 would also like to recognize and thank the Institute de Recherche en Sante et en S6curit6 du Travail du Quebec for again being a symposium cosponsor.

It is a normal practice to hold these symposia in conjunction with the standard development meetings of Committee F-23. In addition to these meetings, Committee F-23 hosted the International Standards Organization (ISO) Technical Committee (TC), ISO/TC 94/SC 13 on Protective Clothing the week preceding the symposium. These ISO meetings expanded the opportunities for symposium delegates from around the world to attend, participate, and learn about European protective clothing standards and their development process. It was a pleasure to host these meetings to expand interactions between Committee F-23 and ISO/TC 94/SC 13. The need to harmonize all standards, and specifically protective clothing and equipment standards, is well recognized. It has been a goal of each Committee F-23 symposium to help accomplish this task by providing a technical forum to present new ideas, publish peer-reviewed technical papers, and maintain an on-going structure for future symposia. The next symposium will be held in Orlando, Florida on 18–20 June 1996.

Protective clothing training is recognized by the leadership of Committee F-23 as an on-going need and responsibility. A one-day training program entitled, “Current Developments in Protective Clothing, Testing and Materials,” was presented on the Sunday before the symposium began. The keynote presentation provided an occupational medicine overview on protective apparel. Six sessions followed that addressed test methods, protective clothing materials, protective gloves, protective clothing, and equipment for fire fighters and other emergency responders and chemical and biological barrier testing. The training program was well received and future symposia will continue to provide this added feature.

The symposium technical papers were arranged in nine topical areas; physical test methods for protective clothing and components, chemical test method development and applications, protective clothing issues relating to pesticides, biological test methods, protective clothing testing and evaluation, protective clothing program management, protective clothing standards and regulations, thermal test method development and applications, and a protective clothing and equipment poster session. Seventy-eight technical presentations were made addressing a wide range of technical areas summarized by the previous list of subjects. This STP contains 37 papers from the symposium.

In an ideal world, engineering controls would be used to minimize worker exposure and protective clothing and equipment use would be the exception rather than the rule. This unfortunately is not the case and, if anything, we see the increased use of protective clothing and equipment (PC&E). In addition, regulations and more knowledgeable workers are requiring PC&E performance data and improvements in the individual items. The need has also been recognized to test the performance of the entire protective clothing ensemble rather than only
its components. ASTM Committee F-23 has been the focal point for the development of PC&E performance standards since 1977. The future is bright for Committee F-23 with the need to update existing standards, develop new standards, interact with ISO and other international standards organizations to provide harmony between standards and continue organizing this ASTM International Symposium on Protective Clothing and Equipment biannually.

We would like to thank the many members of Committee F-23 who supported this conference, ASTM conference staff, all of the peer reviewers, the ASTM editorial staff, and especially Steve Mawn, our Staff Manager. We both look forward to seeing you at our Sixth International Symposium in Orlando.

James S. Johnson
Deputy Associate Program Leader
Fission Energy and System Safety Program
Lawrence Livermore National Laboratory
Livermore, CA 94550

S. Z. Mansdorf
Managing Director-Consulting Services
Liberty International
175 Berkeley Street
Boston, MA 02117