Effects of Radiation on Nuclear Materials:
25th Volume

Editor:
Takuya Yamamoto

Symposium Co-Chairpersons:
Mikhail A. Sokolov
Brady D. Hanson
Selected Technical Papers STP1547
Effects of Radiation on Nuclear Materials: 25th Volume

Guest Editor:
Takuya Yamamoto

ASTM International
100 Barr Harbor Drive
PO Box C700
West Conshohocken, PA 19438-2959

Printed in the U.S.A.

ASTM Stock #: STP1547
THIS COMPILATION OF Selected Technical Papers, STP1547, Effects of Radiation on Nuclear Materials: 25th Volume, contains peer-reviewed papers that were presented at a symposium held June 15–17, 2011 in Anaheim, CA, USA. The symposium was sponsored by ASTM International Committee E10 on Nuclear Technology and Applications.

The Symposium Co-Chairpersons were Takuya Yamamoto, University of California – Santa Barbara, Santa Barbara, CA, USA, Mikhail A. Sokolov, Oak Ridge National Laboratory, Oak Ridge, TN, USA, and Brady D. Hanson, Pacific Northwest National Laboratory, Richland, WA, USA. The STP Editor is Takuya Yamamoto.
Contents

Overview ... vii

Reactor Pressure Vessel Steels

Long Term Irradiation Phenomena in RPV Steels—The LONGLIFE Project
E. Altstadt, F. Bergner, and H. Hein .. 3

A Wide-Range Embrittlement Trend Curve for Western Reactor Pressure Vessel
Steels
M. Kirk ... 20

Long Term Irradiation Effects on the Mechanical Properties of Reactor Pressure
Vessel Steels from Two Commercial PWR Plants
P. Efsing, J. Rouden, and M. Lundgren 52

Fracture Mechanics Characterisation of Forged Base Metal Ring of the
Decommissioned Reactor Pressure Vessel of NPP Greifswald WWER-440 Unit 4
H.-W. Viehrig, M. Houska, E. Altstadt, and R. Kuechler 69

Microstructure Response of WWER-440 Reactor Pressure Vessel Weld Material After
Irradiation and Annealing Treatment
A. Zeman, A. Chernobaeva, V. Graufutin, S. Rogozhkin, L. Debarberis, A. Ballesteros,
D. Erak, and A. Nikitin ... 85

Synergistic Effects of Helium and Displacement Damage

Approach of He/dpa Synergistic Effects in Iron-Based Materials Using JANNUS
P. Trocellier, Y. Serruys, S. Miro, E. Bordas, H. Martin, L. Beck, S. Pellegrino,
N. Chaâbane, S. Vaubaillon, E. Meslin, A. Barbu, D. Brimbal, J. Henry,
C. Robertson, B. Décamps, M. Fluss, S. Tumey, L. Hsiung, R. Schaüblin,
and B. K. Panigrahi .. 111

Modeling and TEM Investigation of Helium Bubble Growth in RAFM Steels Under
Neutron Irradiation
E. Gaganidze, C. Dethloff, O. J. Weiß, V. Svetukhin, M. Tikhonchev, and J. Aktaa 123

Use of MeV Ion Beams to Simulate the Irradiation Effects in Advanced
Materials at JANNUS Saclay
P. Trocellier, Y. Serruys, S. Miro, E. Bordas, H. Martin, L. Beck, S. Pellegrino,
N. Chaâbane, S. Vaubaillon, E. Meslin, A. Barbu, D. Brimbal, J. Henry, B. Décamps,
M. Fluss, S. Tumey, and L. Hsiung .. 143

Austenitic Steels, Ni, Zr, and Al-Mg Alloys, and Polyethylene

Embrittlement of Nickel Alloys in a CANDU Reactor Environment
C. D. Judge, M. Griffiths, L. Walters, M. Wright, G. A. Bickel, O. T. Woo,
M. Stewart, S. R. Douglas, and F. A. Garner 161

Irradiation Testing of Zirconium Alloys and Stainless Steel in Fast Breeder Test
Reactor, India
S. Murugan, P. V. Kumar, J. Joseph, S. Venugopal, T. Jayakumar, and B. Raj 176
| Material Investigations on Highly Irradiated Aluminum Magnesium Alloys for Lifetime Assessment of a Neutron Beam Tube in the BER II Research Reactor |
| H. Hein, H. Schnabel, and S. Welzel |
| 192 |

| (U)HMWPE as Neutron Radiation Shielding Materials: Impact of Gamma Radiation on Structure and Properties |
| D. Wolff, K. von der Ehe, M. Jaunich, M. Böhning, and H. Goering |
| 211 |

Modeling of Radiation Effects

| Atomistic Investigations of Intrinsic and Extrinsic Point Defects in bcc Uranium |
| B. Beeler, C. Deo, M. Baskes, and M. Okuniewski |
| 231 |

| Impact of Vacancy-Type Defects on Thermal Conductivity of β-SiC: Molecular Dynamics Versus an Analytical Approach |
| G. D. Samolyuk, S. I. Golubov, Y. N. Osetsky, and R. E. Stoller |
| 248 |

| A Phenomenological Micromechanical Model of FCC Metals under Radiation Induced Crystal Defects |
| Y. Aoyagi, T. Tsuru, and Y. Kaji |
| 269 |

| Development of Models for Irradiation-induced Changes to Microstructure and Stress–Strain Relations of Austenitic Steels |
| S. Jitsukawa, Y. Abe, K. Suzuki, and N. Okubo |
| 288 |

| Cluster Dynamics Simulation on Microstructure Evolution of Austenitic Stainless Steel and α-Iron Under Cascade Damage Condition |
| Y. Abe, S. Jitsukawa, N. Okubo, H. Matsui, and T. Tsukada |
| 313 |

| Dislocation Bias Calculations in Metals Using a Combined Finite-Element Rate-Theory Approach |
| D. Seif and N. M. Ghoniem |
| 338 |

| Author Index |
| 351 |

| Subject Index |
| 353 |
Overview

The Effects of Radiation on Materials series began in 1956 with a meeting jointly sponsored by the E-10 Committee (called the Committee on Radioisotopes and Radiation Effects at the time) and the Atomic Industrial Forum. The symposium, subsequently sponsored by Committee E-10, began in 1960 and became international in 1963. The current 25th meeting continued an international emphasis, with nearly half of presentations originated outside of the United States involving lead authors from 11 countries.

The 25th Symposium on the Effects of Radiation on Nuclear Materials hosted two special sessions. The first, Light Water Reactor Sustainability Issues and Programs, focused on the current status of research around the world addressing the multiple challenges of extended reactor life. This session set the stage for others that provided more detailed coverage of irradiation embrittlement of reactor pressure vessel steels, which has traditionally been a core topic of this symposium. Indeed, the STP Effects of Radiation on Nuclear Materials series has long served as the primary archive for the evolving knowledge base on this critically important degradation phenomenon.

The second special session dealt with The Synergistic Effects of Gas Atoms (i.e. helium and hydrogen) and Displacement Damage, with an emphasis on the unprecedented challenge to structural and plasma-facing materials in nuclear fusion reactors. This session covered state-of-the art experimental approaches, based on dual and triple ion beam irradiation facilities and use of thermal neutron (n, α) reactions in fission reactors, to producing high levels of He and dpa. The session also included recent insight on the severe consequences He-dpa synergisms in conventional alloys, and the status of developing advance alloys that shows great promise of mitigating He enhanced degradation.

The technical program continued to the symposiums tradition of covering a broad spectrum of nuclear applications. This research involves both experiments and state-of-the art modeling tools. The editor wishes to express his gratitude to all the reviewers, without whom the quality of the publication would not be possible, and to the ASTM staff, who played key roles in publication of these proceedings. Most importantly, the editor would like to thank all the Symposium participants for presenting and authoring high quality papers as well as for facilitating many fruitful discussions.

Takuya Yamamoto
University of California
Santa Barbara