Life Prediction Methodology for Titanium Matrix Composites

W. S. Johnson, J. M. Larsen, and B. N. Cox, editors

ASTM Publication Code Number (PCN)
04-012530-33

ASTM
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
Printed in the U.S.A.
Foreword

The papers in the publication, *Life Prediction Methodology for Titanium Matrix Composites*, were presented at a symposium held 22–24 March 1994 in Hilton Head Island, South Carolina. The symposium was sponsored by ASTM Committee D30 on High Modulus Fibers and Their Composites, E8 on Fatigue and Fracture Mechanics, and NASA Langley Research Center. W. S. Johnson, Georgia Institute of Technology, J. M. Larsen, USAF Wright Laboratories, and B. N. Cox, Rockwell International Science Center, presided as symposium cochairmen and are coeditors of this publication.
Contents

Overview

INTERFACE PROPERTIES AND MICROSTRUCTURE

Interfacial Mechanics and Macroscopic Failure in Titanium-Based Composites—T. W. CLYNE, P. FEILLARD, AND A. F. KALTON

Effects of Reaction Layer on Interfacial Shear Properties and Strength of Fiber in Silicon-Carbide (SiC) Fiber-Reinforced Titanium Alloy Composite—Y. KAGAWA, C. MASUDA, C. FUJIWARA, AND A. FUKUSHIMA

Fiber-Matrix Micromechanics and Microstructural Observations Under Tensile and Cyclic Loading—D. L. DAVIDSON

The Role of Frictional Sliding in Transverse Failure of a Titanium Aluminide Composite—D. B. MARSHALL, W. L. MORRIS, B. N. COX, AND D. A. KOURIS

Issues Related to Prediction of Residual Stresses in Titanium Alloy Matrix Composites—P. RANGASWAMY AND N. JAYARAMAN

FIBER BRIDGING BEHAVIOR

Stress Transfer Mechanics: Models that Should be the Basis for Life Prediction Methodology—L. N. McCARTNEY

Crack-Bridging Effects in Notch Fatigue of SCS-6/TIMETAL 21S Composite Laminates—J. M. LARSEN, J. R. JIRA, R. JOHN, AND N. E. ASHBAUGH

High Temperature/High Frequency Fatigue Crack Growth in Titanium Metal Matrix Composites—D. ZHENG AND H. GHONEM

Modeling and Prediction of Crack Arrest in Fiber-Reinforced Composites—D. C. CARDONA, C. BARNEY, AND P. BOWEN
INELASTIC MATERIAL BEHAVIOR AND MODELING

Sustained Load Behavior of SCS-6/TIMETAL 21s Composites—M. KHOBABIB, R. JOHN, AND N. E. ASHBAUGH 185

A Fully Associative, Nonlinear Kinematic, Unified Viscoelastic Model for Titanium-Based Matrices—S. M. ARNOLD, A. F. SALEEB, AND M. G. CASTELLI 231

Time-Dependent Deformation of Titanium Metal Matrix Composites—C. A. BIGELOW, Y. A. BAHEI-EL-DIN, AND M. MIRDAMADI 278

Modeling of Thermomechanical Fatigue in [0/±45/90]s Sigma/TIMETAL 21S Laminates—Y. A. BAHEI-EL-DIN, G. J. DVORAK, H. NIGAM, AND A. M. WAFA 328

FATIGUE

Prediction of Matrix Fatigue Crack Initiation from Notches in Titanium Matrix Composites—D. J. HERRMANN, G. T. WARD, E. J. LAWSON, AND B. M. HILLBERRY 359

Fatigue Damage Evolution and Degradation of Mechanical Properties in Silicon-Carbide (SiC) Fiber-Reinforced Titanium Matrix Composites—S. M. JENG, P. C. WANG, AND J.-M. YANG 377

Matrix Fatigue Cracking in α2 Titanium Matrix Composites for Hypersonic Applications—T. P. GABB AND J. GAYDA 395

Characterization of Damage Progression in SCS-6/TIMETAL 21S [0]4 Under Thermomechanical Fatigue Loading—M. G. CASTELLI 412