Subject Index

A

Abrasion
metal-ceramic coatings
performance, 37–38
tests in Alundum and silica sand slurries, 23–25, 27–28
wear morphology, 31–35
Abrasion resistance
CM 500L-coated steel mud pump liners
field simulation, 107, 111–114
laboratory tests, 105–107, 109–111
Miller Slurry Abrasivity Test adaptation, 105–107
optimum hardness value, 114
wear life predictions, table, 113
Abrasive wear, alloy and stainless steels under dry and wet corrosive conditions, fig., 10
Alloy and carbon steels
1018
abrasion tests in Alundum and silica sand slurries, 23–25, 27–28, 31–35
CM 500L-coated mud pump liners, 105–114
erosion tests in Alundum and silica sand slurries, 25, 29–31, 35–37
erosivity of coal particles in coal-solvent slurries, 68–76
1020, 1060, 1080, 4142, and 8740, flow-through slurry wear rates, table, 177
1065
ball mill test, 6, 9, 11–16
hub test, 6–11
1090, fifth SAE round-robin test results, table, 220
4340
ball mill test, 6, 9, 11–16
hub test, 6–11
4342
cutting and deformation wear in recycled slurry test, fig., 179
slurry wear in flow-through slurry system, fig., 176
slurry wear in recycled-slurry system, fig., 178
5145
flow-through slurry wear rate, table, 177
slurry wear in flow-through slurry system, fig., 176
slurry wear in recycled-slurry system, fig., 178
A36
corrosion loss in limestone slurry scrubbers, 121–130
linear polarization and weight
loss measurements, fig., 128
pitting, spray slurry effect, 132
scrubber location effect, fig., 126

A514
flow-through slurry wear rate, table, 177
slurry wear comparison in flow-
through and recycled sys-
tems, fig., 180
slurry wear in flow-through
slurry system, fig., 176
slurry wear in recycled-slurry
system, fig., 178
wear surfaces comparison in
flow-through and recycled
slurry tests, fig., 182

Astralloy V
ball mill test, 6, 9, 11–16
hub test, 6–11

Hadfield manganese
ball mill test, 6, 9, 11–16
hub test, 6–11

Ni- and Co-based hardfacings,
slurry wear in recycled
slurry system, 177–182
T-1 low-alloy, fifth SAE round-
robin test results, table, 221
various, Wet Sand/Rubber Wheel
Test results, table, 225

Alumina particles
oscillatory device for simulating
wear by friction, 189–192
wear patterns in dense slurry flow,
188–189

Aluminum alloys
Al 6061
ball mill test, 6, 9, 11–16
hub test, 6–11

Aluminum, recycled coal-water
slurry erosivity, 81–84

Alundum slurries
abrasion of metal coatings
material loss, 27–28
test procedure, 23–25
erosion of metal coatings
material loss, 29–31
test procedure, 25
particulate hardness and abrasion/
erosion, 37–40

Ash content, coal, effect on erosiv-
ity, 67–68, 76

ASTM Standards
A 36/A36M-84a:121
D 1141-75:12
D 2000-80:226
D 2240-84:229
E 10-84:94
E 140-84:96
E 384-84:94
G 1-81:121
G 65-84:23
G 75-82:93
G 75-82:155

B
ball mill test for corrosive wear
alloy and stainless steels, 6, 13–16
methods, 9
Nitronic 30, 6, 13–15
Brinell hardness, 94
pipe materials, table, 97
slurry materials, table, 98

C
Carbon steels (See Alloy and carbon
steels)
Ceilcote systems, characteristics, ap-
plication rates, and costs,
table, 136
Centrifugal pumps, 254–255
conversion of water performance
to slurry performance, 256–
257
Ceramics, in pumps, 246
Chemical vapor deposition, 104
reactor, fig., 105
CM 500L
coated steel mud pump liners, wear life prediction, table, 113
controlled nucleation thermochemical deposition, 104, 107–109
long-time simulation tests for slurry resistance, fig., 112
optimum hardness value, 114
properties, table, 108
slurry abrasion behavior in alkaline slurry, fig., 111 of chromium plating and, fig., 112 in neutral slurry, fig., 110 on steel, long-time simulation, fig., 102
Coal-oil slurries erosivity for mild and stainless steels erosion-corrosion interaction, 57 mass loss data, 52–56 pot tester, 50–51, 60–61 solids loading effects, 52–53, 55 specimen rotation speed effects, 57–58 stabilizing additives, 56–57
Coal particles shape, effect on erosivity, 63, 68, 76 size, effect on erosivity, 68–73, 75–76
Coal vacuum bottoms-tetrahydrofuran slurries erosion of 1018 steel, 73–76 cumulative erosion rates, fig., 75 incremental erosion rates, fig., 74
Coal–water slurries erosivity of mild and stainless steels erosion-corrosion interaction, 57 mass loss, 52, 54, 56 solids loading effects, 54 stabilizing additives, 56 recycling during erosivity testing mineralogy, 85–87 peaking behavior, 81–84 procedure, 80–81 viscosity, pH, and particle size changes, 84–85
Coatings CM 500L (See CM 500L) thickness, wear distribution measurement, 196–197 Wet Sand/Rubber Wheel Test, table, 225 Cobalt-based hardfacings, slurry wear in recycled slurry system, 177–182
Concentration effects, erosivity of coal-oil, coal-water, and coke-oil slurries, 52–56
Controlled nucleation thermochemical deposition chemical vapor deposition reactor, 104, fig., 105
CM 500L coating on steel mud pump liners
development, 104, 107-109
properties, table, 108

Corrosion-erosion protection
limestone slurry scrubbers, 134–138
coating failures, 136–138
materials selection, 134–136
surface preparation, 137–138

Corrosion rates
in limestone spray slurry, 121–130
316 and T304L stainless steel, table, 127
A36 carbon steel, table, 126–128
two-electrode linear polarization system, 119–130

Corrosive wear
alloy and stainless steels, 9–16
hub test, fig., 11
ball mill test, fig., 13
ball mill test with synthetic seawater, fig., 15

Corrosivity, in limestone slurry scrubbers, 121–122

D
Departure value, formulas, 163
Diaphragm pump, 248, fig., 250
Dry sand rubber wheel abrasion test, 38

E
Electrical capacitance, pipeline erosion measurement, 93
Energy approach, erosion wear distribution, 195–197
Epoxy resin, 188, 194–195
Erosion
in dense slurry flow
energy approach, 195–196
numerical flow simulation, 197–198
predictive approach, 189
procedure, 198
flow-through and recycled-slurry tests
comparison, 179–182
equipment and specimens, 170–174
procedures, 175
wear losses and wear rates, 175–179
metal-ceramic coatings
performance, 39–40
tests in Alundum and silica sand slurries, 25–26, 29–31
wear morphology, 35–37
Erosion-corrosion interaction, effect of stabilizing additives, 57
Erosion-corrosion tests
vibratory and jet-in-slit apparatuses, 143–145
damage on pump components, 150–151
materials and damage rates, 145, 148–149
particle impact parameters, 153
slurries, table, 146, 152–153

Erosion testing
peaking behavior, 88–89
peaking behavior of recycled coal-water slurries, 81–84
in pipeline systems
absolute measurements, 92–93
comparative hardness values for pipeline materials, table, 97
Miller numbers and hardness values for slurry materials, table, 98
relative values, 93–96

Erosivity
ccoal particles in coal-solvent slurries, 67–73
ash content effects, 67–68
incremental and cumulative erosion, 68–73
oxide shape and distribution effects, 68
particle size distribution effects, 68
ccoal vacuum bottoms in coal-solv­
ent slurries, 73–76
relative, coal-oil, coal-water, and
coke-oil slurries, 47–61
Erosivity testing
cal-water slurry recycling, 80–88
mineralogy, 85–87
peaking behavior, 81–84
viscosity, pH, and particle size
changes, 84–85

F
Flow, dense (See Slurry flow, dense)
Flow rate, effect on erosion wear dis­
tribution in casing, fig., 206
Flow-through slurry test
electromechanical measurements, 174
equipment and specimens, 170–
174
particles, comparison with recycled
slurry test particles, fig., 181
procedure, 175
and recycled-slurry tests, 179–182
wear losses and wear rates, 176–
177
Friction erosion, oscillatory device
for simulation, 189–192
Fuel recycling during erosivity test­
ing
mineralogy, 85–87
peaking behavior, 83–84, 87–89
slurry erosivity, 81–84
viscosity, pH, and particle size
changes, 84–85

H
Hardfacings, Ni- and Co-based,
slurry wear in flow-through
and recycled-slurry tests, 175–179
Hardness
Alundum and silica particulates,
37–40
CM 500L, optimum value, 114
indices for pipeline erosion, 94–95
metal-ceramic coatings
abrasion performance, 37–38
Alundum abrasion tests, fig., 31
erosion performance, 39–40
silica abrasion tests, fig., 29
silica and Alundum erosion
tests, fig., 33
table, 22
Hastelloy C, slurry erosion-corrosion,
145–150
Hub test for corrosive wear
alloy and stainless steels, 6, 9–11
methods, 6–9

I
Impact
erosion wear patterns by particle,
188–189
particles-wall interaction, 195–197
Impingement
angle, effect on pump wear, 244
particles in dense slurry flow,
188–189
Inclined wall
erosion wear by impact, 192–196
total wear distribution, energy ap­
proach, 197–198

J
Jet impingement slurry erosion tester,
25–26
suitability for coatings, 40–42
Jet-in-slit method for erosion-corro­
sion tests

G
Gypsum slurries, erosion-corrosion
tests, 145–146, 152–153
apparatus and procedure, 144–145
damage rates, fig., 148–149
materials, 145

K
Kerosene-coal slurries (See Coal-
kerosene slurries)
Kinetics, corrosion, in limestone
slurry scrubbers, 131, 135
Knoop Hardness Number, 94, 96
pipe materials, table, 97
slurry materials, 98

L
Lap wear, degrees, 158
LCO-17
abrasion tests
materials loss, 27–28
procedure, 23–25
wear morphology, 31–35
erosion tests
materials loss, 27–28
procedure, 25
wear morphology, 35–37
LCO-22
abrasion tests
materials loss, 27–28
procedure, 23–25
wear morphology, 31–35
erosion tests
materials loss, 27–28
procedure, 25
wear morphology, 35–37
Limestone slurry scrubbers
corrosion protection
coating failures, 136–138
materials selection, 134–136
surface preparation, 137–138
corrosion rate
distribution and chemical com-
position of deposits, table, 130–131
effect of dissimilar metals and
scaling deposits, 131–134
linear polarization method, 119–
121
probe multiplier, 123–125
weight-loss and linear polariza-
tion results, tables, 127–
128
weight-loss method, 121
Linear polarization, two-electrode
corrosion rates in limestone slurry
scrubbers, 119–123
comparison with weight-loss
methods, table, 126–128
method, 119–121
pitting factor, 130–134
probe multiplier, 123–125
Lock Hopper pumps, 248, fig. 249
LW-5
abrasion tests
materials loss, 27–28
procedure, 23–25
wear morphology, 31–35
erosion tests
materials loss, 27–28
procedure, 25
wear morphology, 35–37
LW-26
abrasion tests
material loss, 27–28
procedure, 23–25
wear morphology, 31–35
erosion tests
materials loss, 27–28
procedure, 25
wear morphology, 35–37

M
Metal-ceramic coatings
abrasion performance, 37–38
abrasion tests in Alundum and
silica sand slurries
materials loss, 27–28
procedure, 23–25
wear morphology, 31–35
erosion performance, 39–40
erosion tests in Alundum and silica sand slurries
materials loss, 29–31
procedure, 25
wear morphology, 35–37
hardness, 29, 31, 33, 37, 40, 42
Metals, deformation wear in pumps, 245–246
Metrology, pipeline erosion measurement, 93
Mild steel
erosion damage pattern in coke-oil slurry, 58, fig., 60
erosivity in coal-oil and coke-oil slurries, 52–55
surface damage in coke-oil slurry, 57, fig. 59
Miller number, 93–94
pump material selection, 244–245
SAR test and, 155–156
slurry materials, table, 98
Miller Slurry Abrasivity Test
adaptation for abrasion resistance, 105–107
apparatus modifications, table, 108
procedure modifications, table, 107
for CM 500L-coated steel mud pump liners, 105–107
field simulations, 107, 111–114
laboratory test methods, 105–107, 109–111
Miller Slurry Abrasivity Tester, fig., 106

N
Neutron activation, pipeline erosion measurement, 93
Nickel-based hardfacings, slurry wear in recycled slurry system, 177–182
Nitronic 30
abrasive wear under wet and dry corrosive conditions, fig., 10
corrosive wear, figs., 11, 13, 15
ball mill test, 6, 9, 11–16
hub test, 6–11
Nucleonic gaging, pipeline erosion measurement, 93
Numerical flow simulation dense slurries, 197–198
pump casing, basic equations, 208

O
Oscillatory device for simulating erosion by friction, 189–190
Oxides, coal, effects on erosivity, 68, 76

P
Packings
piston and plunger pumps, 252–253
in slurry pumps, 251–252
Particle(s)
impingement angle, effect on pump wear, 244
shape, effect on erosivity, 63, 68, 76
size
changes during coal-water slurry recycling, 84–85
and sharpness, effect on pump wear, 244
velocity, vibratory and jet-in-slit erosion-corrosion tests, 143, 153
Particles–wall interaction, 195–197
Peaking behavior
cause, 87–88
characterization, 83–84
erosion testing and, 88–89
Permanent magnet gaging, pipeline erosion measurement, 93
Petroleum coke-oil slurries (See Coke-oil slurries)

pH, changes during coal-water slurry recycling, 84–85

Pipeline erosion by slurries
 absolute measurement methods, 92–93
 hardness values for pipe materials, table, 97

Miller numbers and hardness values for slurry materials, table, 98
 relative erosion values, 93–96
 research, 98–99

Pipes, typical wear patterns, fig., 206

Piping, positive displacement pumps, 253–254

Piston pumps, 248
 life of expendables, table, 254

Pitting factor, in limestone slurry scrubbers, 130–134

Plastics, in pumps, 246

Plunger pumps, 248, fig., 250
 life of expendables, table, 254

Polyamide resin, 188, 194–195

Positive displacement pumps, 248, fig. 251
 station piping design, 253–254

Pot tester
 coal-oil, coal-water, and coke-oil slurries, 50–51
 coal-solvent slurries, 65–67, 76
 problems, 60–61
 for relative corrosivity of coal-oil, coal-water, and petroleum coke-oil slurries, 50–51

Predictive model for numerical simulation of wear by impact and friction, 197–198

Pumps
 casing, basic equations for numerical flow simulation, 208
 centrifugal, 254–257
 erosion component, energy approach, 197–200
 positive displacement fluid end, 248–251
 fluid end valve, 251
 lock hopper, 248
 maintenance, 253
 packings, 251–252
 pistons and plungers, 252–253
 station piping design, 253–254

Vibratory and jet-in-slit erosion-corrosion testing apparatuses and procedures, 143–145
 component damage, 150–151
 materials, 145

wear, factors affecting hydraulic design, 246–247

pump material properties, 245–246

slurry properties, 244–245

solid particles, 244

Pyrte, in sink fraction during coal-water slurry recycling, 86–87

Quartz sand, in Wet Sand/Rubber Wheel Abrasion Test, 226

Radionuclides, wear distribution measurement, 196–197

Recycled slurry test
electromechanical measurements, 174

equipment and specimens, 174

flow-through tests and devices, 179–182

particles, comparison with flow-through test particles, fig., 181

procedure, 175

slurry wear, 177–179
wear kinetics, 178–179
Rubber, deformation wear in pumps, 246
"Rubber Wheel Abrasion Test" (Borik), 215
Rubber Wheels, in Wet Sand/Rubber Wheel Abrasion Test, 226, 229, 230

S
Sand particles
oscillatory device for wear by friction, 189–192
wear patterns in dense slurry flow, 188–189
Sand-water slurries, impact erosion on an inclined wall, 192–196
SAR number
calculation, 159–161
departure value, 163
typical, 162
uses, 161–162
SAR test (See Slurry Abrasion Resistance Test)
Scrubbers, limestone slurry (See Limestone slurry scrubbers)
Silica sand slurries
abrasion of metal-ceramic coatings
materials loss, 27
test procedure, 23–25
abrasive particles, comparison in flow-through and, recycled slurry tests, fig., 181
erosion-corrosion tests, 145–146, 152–153
erosion of metal coatings
material loss, 29–31
test procedure, 25–26
flow-through and recycled-slurry tests, 176–179
particulate hardness and abrasion/erosion, 37–40
Sink fraction, during coal-water slurry recycling, 85–87
Sliding-bed erosion, oscillatory device for simulation, 189–192
Slurry Abrasion Resistance Test
equipment, 156–157
lap wear, 158
procedure, 157–158
SAR number
calculation, 158–161
departure value, 163
typical, 162
uses, 161–162
Slurry flow, dense
erosion on an inclined wall, 192–196
numerical analysis and applications
flow modeling, 197–198
procedures, 198
results for pumps, 198–200
wear by friction, 189–192
wear distribution measurement, 196–197
wear patterns, 188–189
The Society of Automotive Engineers
Iron and Steel Technical Committee, 213
SAE Draft XJ1185 (Wet-Sand Rubber-Wheel Abrasion, Test Method), 232–239
Stainless steels
17-4 PH
ball mill test, 6, 9, 11–16
hub test, 6–9
304
ball mill test, 6, 9, 11–16
erosivity of coal-oil, coal-water, and coke-oil slurries, 52–61
fifth SAE round-robin test, 223
flow-through slurry wear, fig., 176
flow-through slurry wear rate, table, 177
recycled-slurry wear, fig., 178
SLURRY EROSION

hub test, 6–9

316

ball mill test, 6, 9, 11–16
corrosion loss in limestone slurry scrubbers, 121–130
flow-through slurry wear rate, table, 177
hub test, 6–9
recycled slurry wear, fig., 178

316L
corrosion loss in limestone slurry scrubbers, 121–130
vibratory and jet-in-slit tests for erosion-corrosion, 145–150

409

ball mill test, 9, 11–16
hub test, 6–9

410

ball mill test, 6, 9, 11–16
hub test, 6–9
416, recycled coal-water slurry erosivity, 81–84
Nitronic 30 (See Nitronic 30)
Standardization, in pipeline erosion studies, 98
Stauffer’s Griding Pot Device, 142
Steel mud pump liners, 111–114
CM 500L coating
controlled nucleation
thermochemical deposition, 104
properties, table, 108
field simulation procedures, 107, 111–114
laboratory testing procedures, 105–107, 109–111
Miller Abrasivity Test
modifications, 105–107
apparatus, table, 108
procedure, table, 107
Surface activation, pipeline erosion measurement by, 93

T
Tetrahydrofuran-coal slurries (See Coal-tetrahydrofuran slurries)
Thermosetting resins, for limestone slurry scrubbers, 134–137
Tool steel D-2, fifth SAE round-robin test, table, 222
Tungsten carbide, recycled coal-water slurry erosivity, 81–84

U
UHMW polyethylene, flow-through slurry wear rate, table, 177
Ultrasonic gaging, pipeline erosion measurement, 93

V
Vacuum bottoms, coal (See Coal vacuum bottoms)
Valves, slurry, 251
Velocity effects, surface damage, 57–58
Vibratory method for erosion-corrosion tests
apparatus and procedure, 143–144
damage rates, fig., 148
materials, 145
Vickers Hardness Number, 94–96
for pipe materials, table, 97
Viscosity, changes during coal-water slurry recycling, 84–85

W
Wear
CM 500L-coated steel mud pump liners
field simulation experiments, 107, 111–114
laboratory test methods, 105–107, 109–111
prediction, table, 113
deformation
metals in pumps, 245–246
rubbers in pumps, 246
distribution in casing, flow rate
effect, fig., 206
by friction
alumina particles on various
plate materials, fig., 191
sand particles on polyamide
resin, fig., 191
by impact
in dense slurry flow, 192–196
energy approach to, 195–197
morphology of metal-ceramic
coatings
abrasion tests, 31–35
erosion tests, 35–37
patterns
in dense slurry flow, 188–189
in slurry pipes, fig., 206
Wear resistance, SAR number
calculation, 158–161
Wear tests
flow-through (See Flow-through
slurry test)
recycled (See Recycled-slurry test)
Weighing, pipeline erosion
measurement, 93
Weight-loss method for corrosion
rates in limestone slurry
scrubbers
comparison with linear polarization
methods, table, 126–128
procedure, 121
Wet Sand/Rubber Wheel Abrasion
Test
304 stainless steel, table, 223
1090 steel, table, 220
D-2 tool steel, table, 222
round-robin tests
first, 215–216
second, 216–217
third, 217
fourth, 217–218
fifth, 218–224
summary, table, 218
status, 219–224
T-1 low-alloy steel, table, 221
variables
abrasives, 226
laboratory techniques, 228–229,
230–231
rubber wheels, 226, 230
test equipment, 228
test material, 227–228
various material groups, table, 225
Wet sand/rubber wheel abrasion
testing machine, 24–25
suitability for coatings, 38–39