Subject Index

A

Abrasion resistance, 120, 168–169
Apparent opening size, 7, 21, 29–30, 172–173
defined, 30
versus equivalent opening size, 9–12
Apparent slope height, 96
Approved list, 21, 25, 28
Armor stones, placement, 53–54
ASTM Committee D-35, 161–175
endurance property subcommittee, 168–171
mechanical properties subcommittee, 162–168
permeability and filtration subcommittee, 171–175
standards, 162
ASTM D 76-77, 164
ASTM D 120-1, 120
ASTM D 737-75, 13
ASTM D 751-68, 129
ASTM D 751-79, 126, 166–167
ASTM D 854-83, 126
ASTM D 1117-80, 126, 129, 167
ASTM D 1175, 169
ASTM D 1388-64, 126
ASTM D 1652-73, 126
ASTM D 1682-64, 129, 163, 169
ASTM D 1777-64, 175
ASTM D 3786-80a, 168
ASTM D 3787-80a, 166
ASTM D 3884-80, 169
ASTM D 4354, 162
ASTM D 4355-84, 120, 162, 168
ASTM D 4429-84, 134
ASTM D 4491-85, 13, 162
ASTM D 4533-85, 167
ASTM D 4595-86, 28, 57, 63, 67, 83–86, 98, 111, 163–166
ASTM D 4632-86, 57
B

Bearing capacity, embankment, 112–113
Biogeoproduts, 153
Biological stability, 169–170
Burst test, circular or rectangular, 60
C

California bearing ratio, 60
California Department of Transportation geotextile methods
generic specifications, 22–33
nonwoven, applications and advantages, 23–24
specification need for utilization improvement, 24–25
Chemical stability, 169–170
Christopher clamp, 164–165
Clogging, 146
behavior, 7–8
ratio, 14, 173
soil-fabric test results, 16
Coherent gravity procedure, 100–101
Constant-head permeameter, 14
Construction
criteria, 125–137
construction-related problems, 125–126
drainage, 127–129
erosion control, 127, 130–131
reinforcement, 135–137
separation, 131–135
site damage, 85–86
resistance, 105
methods, 153-155
Cordrain, flow rate, 43
behavior, 37, 39
Creep, 84, 161, 170
test, 69, 85, 87-89
Crucifix biaxial test, 60
Cylindrical sleeve test, 60

D
Darcy's equation, 149
Darcy's law, 12-13, 18
Darcy's permeability coefficient, 7, 12-13, 28
nominal, 30-31
Design, 145 (See also specific applications)
development of empirical and semiempirical methods, 156
sophisticated analytical methods, 155-156
Diaphragm bursting strength test method, 168
Direct shear test, 69, 88-90
Drainage, 17-19, 21-32, 125, 145
application areas, 34
California Department of Transportation, geotextile methods, 22-25
construction criteria, 127-129
gravity flow on sloped embankment, 40-41
in-plane, 36
lateral designs, 33-44
approaches, 33
hydraulic considerations, 34-36
required data base, 36-37
using bulky geotextiles, 37, 40-42
using geocomposites, 42-43
pressure flow under surcharge fill, 41-42
transmissivity of drainage net, 150
Durability testing, 119-121

E
Earth structure, 70
Effective opening size, 49
Embankments, weak foundations, 69, 74-75, 106-114
bearing capacity failure, 112-113
design principles, 106-107
lack of embankment internal stability, 106-107
lack of foundation stability, 107
lateral sliding, 107-109
performance criteria, 106
reinforcement elongation, 110-111
reinforcement properties and relevant test methods, 113-114
simplified design, 107-113
slip surface failure, 109-112
strain level, 111
Empirical, 21
Enkadrain, flow rate, 39, 43
Equivalent opening size, 172
versus apparent opening size, 9-12
versus port structure, 9-11
retention ability and, 8-9
Erosion control, 45, 125
applications, 46, 48
concept, 45-46
construction criteria, 53-54, 127, 130-131
design criteria for needle-punched nonwovens, 50-53
filter, 45-54
geotextile functional design considerations, 48-49
riprap slope protection, 47

F
Fabrics, 45
Factor of safety, 35, 43, 80-82
Filter
criteria, 45
design, 146-149
mechanisms and properties, 146-147
nonclogging criterion, 148
permeability criterion, 147
retention criterion, 148
Filtration, 8-17, 21, 145
criteria, 8
permeability, 12-14
Flow rate, 33

G
Geocomposites, 33
drainage systems, 38
lateral drainage designs, 42-43
Geogrids, 69
properties, 82-83
Geosynthetics, 33, 145
drain design, 149-151
future, 153
properties, 151, 155
Geotechnical engineering, 145
Grab tensile strength, 163
Grab tension, 28-29
Grab test, 63
Gradient ratio, 7, 173-174
permeameter, 15
test, clogging resistance, 14-17
Granular soil, 45

H
Horizontal stress, 103-104
Hydraulic conductivity, 171-172
Hydraulic properties, 7-19 (See also Filtration)
drainage, 17-19

I
Index test, 119
Initial tangent tensile stiffness, defined, 86
In-plane transmissivity, 174
Instrumentation, 141

L
Laboratory tests, 141
Laterally restrained tension test, 63
Lateral sliding, embankment on weak foundations, 107-109
Load supporting pads, 75-77
Load supporting structures, 70

M
Materials, range of, 152-153
Melt-bonded, 21
Microgeosynthetics, 153

N
Needle-formed, 21, 23-24
Needle-punched, 21, 149-150
New York State Department of Transportation, geotextile methods, 25-31
background, 25
critical designs, 30-31
slope protection, 26, 28
testing and acceptance, 28-30
underdrain, 26-27
Nonclogging criterion, 148
Nonwoven, 21, 148
applications and advantages, 23-24
drainage systems, 38
needle-punched, 149-150
design criteria, 50-53

O
On-site protection of handling, 170
Overlap, minimum, 134

P
Permeability, 7-8, 12-14, 21
criterion, 147
equivalent ratio, 52
fabric compressibility effect, 13-14
soil type and hydraulic gradient effect, 17
Permeameter, 29
canstant-head, 14
gradient ratio, 15
Permittivity, 7, 21, 29, 171-172
defined, 13, 28
underload, 174-175
Physical properties (See Properties)
Pin spacing, 130
Planar flow, 33
transmissivity, 17-18
Polyfelt TS geotextiles, filter design criteria, 51
Polymeric reinforcement material, idealized creep and stress relaxation behavior, 84
Pore size, 7 (See also Apparent opening size; Equivalent opening size)
Pretensioning, 153-154
Properties, 82-83, 126, 141 (See also Filtration; Hydraulic properties)
current requirements, 143
geosynthetics, 151, 155
minimum, 129
soil-fabric, 141-142
Pullout test, 69, 89-90
Puncture test, 166-167
friction between soil and reinforcement, 99
internal stability, 91-93
length of reinforcement, 96-97
limit equilibrium design, 97-98
performance criteria, 90-91
reinforcement force effect, 92-93
reinforcement orientation and length, 94
simplified design, 94-97
soil reinforcement, 70, 72
wedge failure mechanism, 94
Reinforced soil walls, 70, 72-73, 99-105
construction site damage, 105
design principles, 100
environmental exposure resistance, 105
external stability, 104-105
initial tangent stiffness, 105
internal stability, 102-104
performance criteria, 99-100
simplified design, 100-105
Reinforcement, 125
current requirements, 135-137
material types, 82
Research, 141-143, 155-156
Retaining walls, 69
Retention criterion, 148
Riprap slope protection, 47
Roads, 77-78
Rutting, repair, 134-135

R
Railroad track structures, 77-78
Reinforced slopes, 90-99
amount of reinforcement, 94-96
deformations under working conditions, 98
design principles, 91-94
distribution of reinforcement, 96
external stability, 93
failure modes, 91
Sloped soil layers, 73–74
Slopes (See also Reinforced slopes)
 protection, New York State Department of Transportation, geotextile methods, 26, 28
 stability, 69
Soil, 145
 layers, nonuniform foundations, 74–76
 permeability, 12
 reinforcement, 69–114, 145 (See also Reinforced slopes; Reinforced soil walls)
 categories, 79
 construction site damage effects, 85–86
 design approach, 79–80
 discrete approach, 89
 embankments on weak foundations, 74–75
 factor of safety, 80–82
 global approach, 80
 influence of load duration on isochronous load-strain behavior, 89
 interaction characteristics, 88–90
 load supporting pads, 75–77
 railroad track structures, 77–78
 reinforced slopes, 70, 72
 reinforced soil walls, 70, 72–73
 reinforcement material types, 82
 roads, 77–78
 sloped soil layers, 73–74
 soil layers on nonuniform foundations, 74–76
 soil mass-reinforcement geometry, 79
 temperature effects, 85–86
 tensile characteristics, 82–89
 time-dependent behavior, 84–85
 types of structures, 70–80
 retention, 21, 29–30
Soil-fabric properties, 141–142
Standardization, 141–142
Standards, 161–162
Strength, 21
Stress relaxation, 84
Strip tension test, 63
Survivability, 125, 126–128

T
Tabor test, 120, 169
Tensile force, 104
Tensile resistance, 87
 defined, 82–86
 Tensile strength, 86, 161
Tensioned membrane effect, 152
Tension testing, 57–69
 California bearing ratio, 60
 choice, 63–64
 circular or rectangular burst test, 60
 criteria, 58
 crucifix biaxial test, 60
 cylindrical sleeve test, 60
 existing tests, 58, 62
 grab test, 63
 in-soil, 82–83
 jointing and seaming, 68
 laterally restrained tension test, 63
 load/extension envelope for differing rates of strain, 59
 localized load results, 65, 67
 results, 64–65
 size specimen, 58–59
 strip tension test, 63
 unidirectional load results, 67
 unidirectional test setup, 60
 wide strip, 28–29, 83–84, 163–166
Testing
 current, 141–142
 future, 141–144
 New York State Department of Transportation, geotextile methods, 28–30
 Thermal stability, 121
 Thickness, 175
 Tieback wedge procedure, 100–101
 Tortuous path, 23
Transmissivity, 7, 33
 definition, 35
drainage net, 150
planar flow, 17-18
response versus applied normal stress, 37
tests, 18-19
Trapezoid tear, 167

U

Ultraviolet
degradation resistance, 170-171
stability, 119-120

Underdrain, New York State Department of Transportation, geotextile methods, 26-27
Unpaved roads, 145
geosynthetic-reinforced, 151-152

V

Vertical stress, maximum, 102-103

W

Woven, 21-22, 148