Environmentally Assisted Cracking: Science and Engineering
STP 1049

Environmentally Assisted Cracking: Science and Engineering

W. Barry Lisagor, Thomas W. Crooker, and Brian N. Leis, editors

ASTM
1916 Race Street
Philadelphia, PA 19103
Foreword

The ASTM Symposium on Environmentally Assisted Cracking: Science and Engineering was held in Bal Harbour, Florida, on 9–11 Nov. 1987. The event was sponsored by ASTM Committees G-1 on Corrosion of Metals, E-24 on Fracture Testing, and E-9 on Fatigue. The symposium chairmen were W. B. Lisagor and T. W. Crooker of the National Aeronautics and Space Administration, and B. N. Leis of Battelle Columbus Laboratories. This publication was edited by Mr. Lisagor, together with Messrs. Crooker and Leis.

Contents

Overview

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of Strain on Hydrogen Assisted Cracking of Cathodically Polarized High-Strength Steel—J. R. SCULLY AND P. J. MORAN</td>
<td>5</td>
</tr>
<tr>
<td>Discussion</td>
<td>29</td>
</tr>
<tr>
<td>Thermomechanical Treatments and Hydrogen Embrittlement of Ferritic Stainless Steels with Different Interstitial Contents—R. N. IYER, R. F. HEHEMANN, AND A. R. TROJANO</td>
<td>30</td>
</tr>
<tr>
<td>Influence of Overload and Temperature on Stress Corrosion Crack Growth Behavior in a Low-Alloy Steel—V. VENUGOPAL AND S. K. PUTATUNDA</td>
<td>42</td>
</tr>
<tr>
<td>Role of the Oxide Film in the Transgranular Stress Corrosion Cracking of Copper—T. B. CASSAGNE, J. KRUGER, AND E. N. PUGH</td>
<td>59</td>
</tr>
<tr>
<td>Discussion</td>
<td>75</td>
</tr>
<tr>
<td>Coherency Stress and Transgranular Stress Corrosion Cracking of Cu–18Au Alloy—J. D. FRITZ, B. W. PARKS, AND H. W. PICKERING</td>
<td>76</td>
</tr>
</tbody>
</table>

MECHANISMS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Electrochemical Potential on the Slow Strain Rate Fracture of 4340 Steel in a Combustion Product Residue—R. D. DANIELS, A. P. SADARANGANI, M. S. MAGNER, AND K. J. KENNELLEY</td>
<td>103</td>
</tr>
<tr>
<td>Environmental Acceleration of Fatigue Crack Growth in Reactor Pressure Vessel Materials and Environments—W. A. VAN DER SLUYS AND R. H. EMANUELSON</td>
<td>117</td>
</tr>
</tbody>
</table>

MATERIAL PERFORMANCE—I
Interactive Effects of Cold Work, Yield Strength, and Temperature on Sulfide Stress Cracking—M. W. JOOSTEN, J. J. MURALI, AND J. L. HESS 136

Sensitivity to Sulfide-Stress Cracking at Welds in Line-Pipe Steels—H. J. CIALONE AND D. N. WILLIAMS 152
Discussion 167

Factors Affecting the Susceptibility of Carbon-Manganese Steel Welds to Cracking in Sour Environments—R. J. PARGETER 169

MODELING AND ANALYSIS

A Mechanics-Based Analysis of Stress-Corrosion Cracking of Line-Pipe Steel in a Carbonate-Bicarbonate Environment—B. N. LEIS AND W. J. WALSH 243

A Model for Environmentally Assisted Crack Growth Rate—G. GABETTA, C. RINALDI, AND D. POZZI 266

MATERIAL PERFORMANCE—II

Effects of Stress and Stress History on the Magnitude of the Environmental Attack in Renè 80—S. J. BALSONE, T. NICHOLAS, AND M. KHOBAB 303

Role of Environment in Elevated Temperature Crack Growth Behavior of Renè N4 Single Crystal—M. KHOBAB, T. NICHOLAS, AND S. V. RAM 319

Environmental and Microstructural Influence on Fatigue Propagation of Small Surface Cracks—J. PETIT AND A. ZEGHLoul 334

Environmentally Induced Fatigue Crack Propagation Under Variations in the Loading Conditions—K. SCHULTE, H. NOWACK AND G. LÜTJERING 347

Environmental Influence on the Effect of a Single Overload on the Fatigue Crack Growth Behavior on a High-Strength Aluminum Alloy—N. RANGANATHAN, M. QUINTARD, J. PETIT, AND J. DE FOUQUET 374

TEST METHODS

Evaluation of \(K_{\text{sc}} \) and \(da/dt \) Measurements for Aluminum Alloys Using Precracked Specimens—M. S. DOMACK 393

Material Performance—III

Keyhole Compact Tension Specimen Fatigue of Selected High-Strength Steels in Seawater—S. S. RAJPATHAK AND W. H. HARTT

Cyclic Tension Corrosion Fatigue of High-Strength Steels in Seawater—W. J. D. JONES AND A. P. BLACKIE

Fatigue Crack Growth Behavior of Different Stainless Steels in Pressurized Water Reactor Environments—C. AMZALLAG AND J-L. MAILLARD

Environmentally Assisted Cracking Behavior of a High-Level Nuclear Waste Container Alloy—L. A. JAMES AND D. R. DUNCAN

Corrosion Fatigue Cracking of Chromium-Containing Steels—B. D. HARTY AND R. E. J. NOËL

Author Index

Subject Index