Reduced Activation Materials for Fusion Reactors

Klueh/Gelles/Okada/Packan, editors

ASTM STP 1047
Reduced Activation Materials for Fusion Reactors

R. L. Klueh, D. S. Gelles, M. Okada, and N. H. Packan, editors
Library of Congress Cataloging-in-Publication Data

Reduced activation materials for fusion reactors / R.L. Klueh . . .
et al.].

(STP; 1047)

"ASTM publication code number (PCN) 04-010470-35"—T.p. verso.
Includes bibliographical references

TK9204.R43 1990
621.48'4—dc20

Copyright © by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1990

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.
Foreword

Effects of Radiation on Materials: Fourteenth International Symposium was presented at Andover, MA, 27–30 June 1988. The symposium was sponsored by ASTM Committee E-10 on Nuclear Technology and Applications. N. H. Packan, Oak Ridge National Laboratory, presided as chairman of the symposium with R. E. Stoller, Oak Ridge National Laboratory, and A. S. Kumar, University of Missouri-Rolla, as vice-chairmen. There are two resulting Special Technical Publications (STPs) from the symposium: Effects of Radiation on Materials: Fourteenth International Symposium (Volumes I and II), STP 1046, and Reduced-Activation Materials for Fusion Reactors, STP 1047.
Contents

Overview 1

AUSTENITIC STAINLESS STEELS

Reduced Activation Austenitic Stainless Steels: The Fe-Mn-Cr-C System—RONALD L. KLUEH AND PHILIP J. MAZIASZ 7

An Assessment of Fe-Cr-Mn Austenitic Alloys for Fusion Service Using Fast Reactor Irradiation—FRANK A. GARNER AND JACK M. McCARTHY 19

Design of Low Activation Austenitic Steels by the d-Electron Concept—N. YUKAWA, M. MORINAGA, K. NISHIYAMA, Y. MATSUMOTO, Y. MURATA, AND H. EZAKI 30

Irradiation Effects on Mechanical Properties of High Manganese Steels—H. YOSHIDA, K. MIYATA, H. KODAKA, AND S. NISHIKAWA 47

Precipitation Sensitivity to Alloy Composition in Fe-Cr-Mn Austenitic Steels Developed for Reduced Activation for Fusion Application—PHILIP J. MAZIASZ AND RONALD L. KLUEH 56

The Dependence of σ-Phase Formation in Fe-Cr-Mn Alloys on Cold Work, Aging, and Alloy Composition—YOSHIKAWA OKAZAKI, MITSUHIRO MOCHIZUKI, KAZUYA MIYAHARA, AND YUZO HOSO 80

The Effect of Composition and Phase on Segregation of Fe-Cr Based Alloys—HEISHIKI TAKAHASHI, KIYIOKO SHIBA, SHIGEO NAKAHIGASHI, SOMEI OHNUKI, HIROSHI KINOSHITA, AND FRANK A. GARNER 93

Decrease of Ductility Due to Hydrogen in Fe-Cr-Mn Steel—NAOHIRO IGATA, T. OSADA, T. NAGATO, HIDEO TSUNAKAWA, AND T. SEKIGUCHI 103

FERRITIC STEELS

Effects of Irradiation on Low Activation Ferritic Alloys: A Review—DAVID S. GELLES 113

Optimization of Reduced Activation Ferritic Steels—FUJIO ABE, TETSUJI NODA, HIROSHI ARAKI, AND MASATOSHI OKADA 130

Low Chromium Reduced-Activation Ferritic Steels—R. L. KLUEH AND P. J. MAZIASZ 140
The Post-Irradiation Tensile Properties and Microstructure of Several Vanadium Alloys—DAVID N. BRASKI 161

A TEM Study of V and V-at.%10B with Fast Neutron Irradiations—HIROSHI KAWANISHI AND SHIORI ISHINO 179

Microstructure of Neutron Irradiated Vanadium Alloys—SOMEI OHNUKI, H. TAKAHASHI, AND H. KINOSHITA 190

Defect Behavior and Microstructural Evolution in Vanadium-Base Alloys Under Irradiation in a High-Voltage Electron Microscope—TAKEO MUROGA, KUNIAKI ARAKI, AND NAOAKI YOSHIDA 199

EB Welding of Low-Activation Vanadium-Binary Alloys—YUTAKA HIRAOKA, TETSUJI NODA, AND MASATOSHI OKADA 210

Diffusion Bonding Between Vanadium and Alumina—KATSUNORI ABE, KIYOSHI OKAMURA, AND MICHIO KIKUCHI 219

Solid State Reactions Between V-Base Alloys and Silicon Carbide at High Temperatures—KAZUYA KUROKAWA, KEN-ICHIRO MIYAMOTO, AND RYUKICHI NAGASAKI 236

Index 249