EMERGING SEMICONDUCTOR TECHNOLOGY

A symposium sponsored by
ASTM Committee F-1 on Electronics
San Jose, CA, 28–31 Jan. 1986

ASTM SPECIAL TECHNICAL PUBLICATION 960
Dinesh C. Gupta, Siliconix, Inc., and
Paul H. Langer, AT&T Bell Laboratories,
editors

ASTM Publication Code Number (PCN)
04-960000-46

ASTM 1916 Race Street, Philadelphia, PA 19103
Foreword

The Fourth International Symposium on Semiconductor Processing was held at San Jose, California on 28-31 January, 1986 under the chairmanship of Dinesh C. Gupta, Siliconix Incorporated. The Symposium was sponsored by ASTM Committee F-1 on Electronics and co-sponsored by National Bureau of Standards, Semiconductor Equipment and Materials Institute, Stanford University Center for Integrated Systems, and IEEE Components, Hybrids and Manufacturing Technology Society. The Technical Committee was headed by Paul H. Langer, AT&T Bell Laboratories and the Arrangements and Publicity Committee was headed by Carl A. Germano, Motorola Incorporated.


In addition, the guidance was provided by the Chairman and the officers of ASTM Committee F-1 on Electronics, its various subcommittees including the Executive subcommittee. The following persons presided the technical and workshop sessions: J. Albers and A. Baghdadi, National Bureau of Standards, K. E. Benson, AT&T Bell Laboratories, J.O. Borland, Applied Materials, Inc., R.H. Bruce, Xerox Palo Alto Research Center, M. Buehler, Jet Propulsion Laboratory, W. M. Bullis, Siltec Corporation, S. Cox, AT&T Technologies, M. Current, Applied Materials, Inc., J. R. Ehrstein, National Bureau of Standards, B. Fay, Micronix Corporation, T. Francis, Air Products & Chemicals, G. A. Gruber and D. C. Gupta,

We are indebted to Richard D. Skinner, President, Integrated Circuit Engineering Corporation who presented a dinner speech on "Semiconductor Industry - An Economic Review", Richard A. Blanchard, Vice President, Siliconix Incorporated, Pat Hill Hubbard, Vice President, American Electronics Association, Richard Reis, Assistant Director, Stanford University Center for Integrated Systems, Robert I. Scace, Deputy Director, Center for Electronics and Electrical Engineering, National Bureau of Standards, James E. Springgate, President, Monsanto Electronic Materials Company, and James A. Thomas, Vice President, ASTM for the keynote speeches on the various topics on the first day of the Symposium.

We are grateful to the members and guests of ASTM Committee F-1 and Standards Committees of SEMI who were called upon from time to time for special assignments during the two-year planning of the Symposium.

Over one hundred and fifty scientists participated all over the world in the review process for the papers published in this publication. Without their participation, this publication would not have been possible.

And finally, we acknowledge the hard work and efforts of the staff of publication, review, editorial and marketing departments of ASTM in bringing out this book.
A Note of Appreciation
to Reviewers

The quality of the papers that appear in this publication reflects not only
the obvious efforts of the authors but also the unheralded, though essential,
work of the reviewers. On behalf of ASTM we acknowledge with appreciation
their dedication to high professional standards and their sacrifice of time and
effort.

ASTM Committee on Publications
Related
ASTM Publications

Semiconductor Processing, STP 850 (1984), 04-850000-46

Silicon Processing, STP 804 (1983), 04-804000-46

Lifetime Factors in Silicon, STP 712 (1980), 04-712000-46


Preface

The papers in this volume were presented at the Fourth International Symposium on Semiconductor Processing held in San Jose, California on 28-31 January, 1986. The Symposium was sponsored by ASTM Committee F-1 on Electronics, and co-sponsored by National Bureau of Standards, Semiconductor Equipment and Materials Institute, Stanford University Center for Integrated Systems, and IEEE Components, Hybrids and Manufacturing Technology Society. In addition to the technical presentations, the symposium included two well-attended workshops, impressions of which are provided in appendix I.

The symposium addressed new problems in semiconductor technology and day-to-day problems in semiconductor processing for the mid 80's which arise from the rapid increases in device complexity and performance, emergence of integrated systems on-a-chip, automated factories, and silicon foundries. In the face of these demands, the realization of acceptable yields and reliability requires greater manufacturing and process-control disciplines from starting materials to finished devices. The symposium theme was, again this year, chosen to be Quality Through Measurement and Control.

The symposium opened with the talks on Standards and Product Quality by James A. Thomas, ASTM, and Standards for the Semiconductor Industry from ASTM and SEMI by Robert I. Scace, National Bureau of Standards. These presentations were followed by two papers giving the overview of silicon technology and relating it to device requirements. The requirements of silicon materials were described by James E. Springgate, Monsanto Electronic Materials Company. The process and equipment considerations were discussed by Richard A. Blanchard, Siliconix Incorporated.

The opening general session included a presentation and a discussion on Graduate Education for the Electronics Industry. Pat Hill Hubbard, Vice President, American Electronics Association discussed various programs that the Foundation is involved in in order to make doctoral study and academic careers more attractive. She said, "The need to have an adequate supply of quality engineers and sufficient faculty to educate them is considered of paramount importance to the health of the high tech industry and to the economic health of the nation." Richard Reis, Assistant Director, Stanford University Center for Integrated Systems presented a graduate education mix from Stanford's point
of view, noting the exceptions which make Stanford different from other schools in the nation.

The response to the symposium was extremely favorable once again. The involvement of industry, academia and government including the participation of foreign institutions confirmed a continued need for a regular forum to discuss technology topics in the context of measurement and control, a consistent theme which the Symposium established in 1982 involving the understanding and day-to-day control of the complex process technologies required for VLSI and other advanced device concepts.

The plans for the next symposium in 1988 in the series of symposia to be held at two-year intervals are underway. The problem areas and standardization needs identified in these symposia will provide the feedback to the research community and voluntary standards system essential for the future growth of the industry.

The cooperation and support of the ASTM staff in the formulation of this publication is appreciated. We are indebted to our industrial, government and university colleagues who contributed to the Symposium and the Proceedings.

Dinesh C. Gupta
San Jose, California.

Paul H. Langer
Allentown, Pennsylvania.
Contents

Introduction 1

Keynote Address

Silicon and Semiconductors: Partners in the Late 1980's—J. E. Springgate 7

Standards for Semiconductor Industry

ASTM and SEMI Standards for Semiconductor Industry—R. I. Scace 15

Epitaxial Technology

Low Temperature and Low Pressure Silicon Epitaxy by Plasma-Enhanced CVD—R. Reif 21

Thin Silicon Epitaxial Films Deposited at Low Temperatures—H.-R. Chang and J. S. Rosczak 24

Thin Epitaxial Silicon by CVD—S. M. Fisher, M. L. Hammond, and N. P. Sandler 33

Effects of Gettering of EPI Quality for CMOS Technology—C.-C. D. Wong, J. O. Borland, and S. Hahn 51

Silicon Epitaxial Growth on N+ Substrate for CMOS Products—R. B. Swaroop 65

Characterization of the In Situ HCL Etch for Epitaxial Silicon—J. W. Medernach and V. A. Wells 79

Dielectrics and Junction Formation Techniques

Doped Oxide Spin-On Source Diffusion—V. Ramamurthy 95
Effect of a Shallow Xenon Implantation on a Profile Measured by Spreading Resistance—E. Lora-Tamayo, J. Du Port de Pontcharra, and M. Bruel

Measurements of Cross-Contamination Levels Produced By Ion Implanters—L. A. Larson and B. J. Kirby

Some Aspects of Productivity of a Low Pressure CVD Reactor—S. Middleman


The Electrical Properties of MOS Transistors Fabricated with Direct Ion Beam Nitridation—H.-S. Lee

Plasma Technology and Other Fabrication Techniques

RIE Damage and Its Control in Silicon Processing—S. J. Fonash and A. Rohatgi

The Bonding Structure and Compositional Analysis of Plasma Enhanced and Low Pressure Chemical Vapor Deposited Silicon Dielectric Films—S. V. Nguyen, J. R. Abernathey, S. A. Fridmann, and M. L. Gibson

Monte Carlo Simulation of Plasma Etch Emission Endpoint—E. J. Bawolek

Profile Control of Plasma-Etched Polysilicon Using Implant Doping—T. Abraham and R. Theriault

The Effects of Plasma Processing of Dielectric Layers on Gallium Arsenide Integrated Circuits—K. C. Vanner, J. R. Cockrill, and J. A. Turner

Quality Control and Optimization During Plasma Deposition of a-Si:H—M. Kunst, A. Werner, G. Beck, U. Kuppers, and H. Tributsch

Effects of Deep UV Radiation on Photoresist in Al Etch—S. C. Lee and B. Chin
Influence of X-Ray Exposure Conditions on Pattern Quality—
V. STAROV 257

Palladium Silicide Contact Process Development for VLSI—
R. N. SINGH 266

Material Defects, Oxygen and Carbon in Silicon

Characterization of Silicon Surface Defects by the Laser Scanning
Technique—H. M. LIAW, J. W. ROSE, AND H. T. NGUYEN 281

Damage Aspects of Ingot-to-Wafer Processing—L. D. DYER 297

Hydrogen in Silicon and Generation of Haze on Silicon Surface in
Aging—T. SHIRAIWA AND S. INENAGA 313

Identifying Gettered Impurities in Silicon by LIMA Analysis—
M. C. ARST 324

Effect of Bulk Defects in Silicon on SiO₂ Film Breakdown—
H. SUGA AND K. MURAI 336

Free Carrier Absorption and Interstitial Oxygen Measurements—
W. K. GLADDEN AND A. BAGHDADI 353

High Reliability Infrared Measurements of Oxygen and Carbon in
Silicon—N. INOUE, T. ARAI, T. NOZAKI,
K. ENDO, AND K. MIZUMA 365

Yield Enhancement and Contamination Control Aspects

Nature of Process Induced Si-SiO₂ Defects and Their Interaction with
Illumination—S. KAR AND M. TEWARI 381

A Strategy for Reducing Variability in a Production Semiconductor
Fabrication Area Using the Generation of System Moments
Method—E. C. MAASS 393

Computerized Yield Modeling—C. H. BECK 404

Particle and Material Control Automation System for VLSI
Manufacturing—M. D. BRAIN 414
Semiconductor Yield Enhancement through Particulate Control—
N. D. CASPER AND B. W. SOREN 423

Particulate Control in VLSI Gases—J. M. DAVIDSON AND T. P. RUANE 436

**DOPANT PROFILING TECHNIQUES AND IN-PROCESS MEASUREMENTS**

Spreading Resistance Measurements—An Overview—J. R. EHRRSTEIN 453

Some Aspects of Spreading Resistance Profile Analysis—J. ALBERS 480

Spreading Resistance: A Comparison of Sampling Volume Correction Factors in High Resolution Quantitative Spreading Resistance—M. PAWLIK 502


Monte Carlo Calculation of Primary Kinematic Knock-On in SIMS—J. ALBERS 535


Mapping Silicon Wafers by Spreading Resistance—R. G. MAZUR 586

Production Monitoring of 200mm Wafer Processing—W. A. KEENAN, W. H. JOHNSON, AND A. K. SMITH 598

Applications of X-Ray Fluorescence Analysis to the Thin Layer on Silicon Wafers—T. SHIRAIWA, T. OCHIAI, M. SANO, Y. TADA, AND T. ARAI 615

Qualification of GaAs and AlGaAs by Optical and Surface Analysis Techniques—J. F. BLACK, J. M. BERAK, AND G. G. PETERSON 628
Wafer FAB Automation, An Integral Part of the CAM Environment—C. A. FIORLETTA, R. LENNARD, AND J. G. HARPER 653

Computer Integrated Manufacturing: The Realities and Hidden Costs of Automation—M. S. LIGETI 662

Industry Considerations in Determining Equipment Reliability—J. C. GREINER 673

Appendixes

Appendix I—Workshop and Panel Discussions 683

Appendix II—Graduate Education for the Electronics Industry 691

Indexes 695