Index

A
Alloy melting point (Table), 60
Annealing of thermocouples, 117
Assemblies, thermocouple, 62, 80
Illustrations, 74
Automatic ice point, 106
Average value of set of data, 238

B
B, thermocouple type, 20
Application, 25
Chemical composition (Table), 26
Electrical resistance (Table), 33
Change of with temperature (Table), 32
Emf versus temperature
Graph, 34
Tables, 165–173
Environmental limits (Table), 27
Extension wires for (Table), 36
Physical properties (Table), 30
Power series expansion for, 220
Seebeck coefficients (Table), 23, 29
Trade names for, list of, 25
Upper temperature limits (Table), 28
Becquerel, 5
Bias of test data set, 239
Graph, 241

C
Calibration, 112
Comparison methods for, 126
Calibration (continued)
Data, raw, analysis of, 131
Graphs, 132–137
Fixed point methods for, 124
In laboratory furnaces, 126, 139
In stirred liquid baths, 129, 139
Instruments for, 139
Interpolation methods for, 131
Methods of, 120
Of single thermoelements, 136
Of used thermocouples, 130
Procedure for, 139
Test specimen for, 137
Uncertainties in, 121
For comparison methods, 122
For fixed point methods, 122
Statistical consideration of, 241
Tables of, 122–124
Ceramic-insulated sheathed thermocouples, 81
Chromium-nickel thermocouple types (see Nickel-chromium types)
Circuits
Industrial, typical (Illustration), 17
Potentiometer, 99
Illustration, 100
Test, for single element (Illustration), 138
Thermoelectric, 14
Clausius, Rudolph, 3
Coefficients, power series expansion, 217–220
Color code for insulated thermocouple and, extension wire (Table), 68
Comparison calibration, 126
Compatibility of materials, high temperature, 58
Connecting head, thermocouple, 62
Illustration, 74
Connections, thermocouple circuit, 73
Connectors, thermocouple, 63
Illustration, 74
Constant temperature oven, 106
Cooling, thermoelectric, 4
Correction factor, dynamic, 146
Cryogenic thermometry, 222
Seebeck coefficients for (Graph), 236

Data, calibration, analysis of, 131
Graphs, 132-137
Defining points, IPTS-68 (Table), 114
Definitions (see Terminology)
Deviation, standard, 239
Difference from standard table, calibration interpolation by, 133
Digital indicator, 97, 98
Distribution, normal, 238
Doping of thermoelement, 55
Duplex wire color code (Table), 68
Dynamic correction factor, 146

E, thermocouple type, 20
Application, 23
Chemical composition (Table), 26
Electrical resistance (Table), 33
Change of with temperature (Table), 32
Emf versus temperature
Graph, 34
Tables, 174-179

E, thermocouple type (continued)
Environmental limits (Table), 26
E, thermocouple type
Extension wires for (Table), 36
Physical properties (Table), 30
Power series expansion for, 218
Seebeck coefficients (Table), 23, 29
Cryogenic (Graph), 236
Trade names for, list of, 25
Upper temperature limits
Graph, 22
Table, 28
Element, thermocouple, 62, 63
Emf measurement, 97, 118
Entropy, 3, 8
Error, sources of, 30, 109
Errors, statistical consideration of, 237
Extension wires, thermocouple, 27
Categories for, 30
Color code for (Table), 68
Errors arising from, 30
Graph, 38
Reasons for using, 29
Extensions, copper (Illustration), 16, 17

F
Fabrication, thermocouple, 62
Fixed point calibration, 124
Fourier heat conduction, 6
Fourier, Jean, 3
Fourier's law, 11
Freedom, degrees of, 239
Freezing point calibration, 125
Furnaces, calibration, 126

G
Galvanic error, 109
Gold-cobalt thermoelements, 223
Gold-iron thermoelements, 223
Gold-0.07 atomic-percent iron thermoelements, 223
Seebeck coefficient (Graph), 236

H
Hardware, thermocouple, 62
Head, thermocouple connecting, 62
Illustration, 74
Heat transfer, 147
High-temperature compatibility, 58
Historical development, thermoelectric, 3
Homogeneity, thermoelement, 119
Homogeneous metals, law of, 13

I
Ice point cell, 104
Automatic type, 106
Illustration, 105
Immersion error, 109
Inhomogeneity, thermoelement, 119
Installation effects, thermocouple, 143
Analysis of, 147
Insulation, thermoelement
Compacted ceramic, 82
Construction (Illustration), 82
Dimensions of (Graph), 83
Materials characteristics (Table), 84
Hard ceramic, 66
Properties (Table), 70
Types of (Illustration), 69
Nonceramic, 63
Characteristics (Table), 67
Color code for (Table), 68
Intermediate metals, law of, 14
Intermediate temperatures, law of, 14
Illustration, 16
Iridium-alloy thermocouples, 39, 43, 45

Iridium-alloy thermocouples (continued)
Characteristics (Tables), 43, 47
Emf versus temperature (Graphs), 42, 46
Extension wires for, 36
IPTS-68, 112
Fixed points for (Table), 114
Interpolation instruments for, 113
Secondary points for (Table), 116
Working standards for
High-temperature standards, 117
Liquid-in-glass thermometer, 117
Resistance thermometer, 116
Thermocouples, 117

J
J, thermocouple type, 20
Application, 22
Chemical composition (Table), 26
Electrical resistance (Table), 33
Change of with temperature (Table), 32
Emf versus temperature Graph, 34
Tables, 180-187
Environmental limits (Table), 26
Extension wires for (Table), 36
Physical properties (Table), 30
Power series expansion for, 218
Seebeck coefficients (Table), 23, 29
Trade names for, list of, 25
Upper temperature limits
Graphs, 22
Table, 28
Joule heating, 7
Joule, James, 3

K
K, thermocouple type, 20
Application, 24
K, thermocouple type (continued)
 Chemical composition (Table), 26
 Electrical resistance (Table), 33
 Change of with temperature (Table), 32
 Emf versus temperature (Graph), 34

K, thermocouple type Emf
 versus temperature (Tables), 188-195

Environmental limits (Table), 26, 27
Extension wires for (Table), 36
Physical properties (Table), 30
Power series expansion for, 219
Seebeck coefficients (Table), 23, 29
Trade names for, list of, 25
Upper temperature limits
 Graphs, 22
 Table, 28
Kelvin, Lord
 (see Thompson, William)
Kelvin relations, 7

L

Laboratory furnace, calibration in, 126
Laws of thermoelectric circuits, 13
Least squares fit, 134, 240
Limits of error, thermocouple (Table), 164

M

Matching error, thermocouple wire, 109
Mean, precision of, 240
Mean value of set of data, 238
Measurement uncertainty, consideration of, 237

Melting point calibration, 125
Melting points, alloy (Table), 60
Metal-sheathed thermocouples, 81
Metals, law of homogeneous, 13
Metals, law of intermediate, 14
 Illustration, 15
Millivoltmeter, 97
Molten metal bath, calibration in, 128
Molybdenum-nickel thermocouples
 (see Nickel-molybdenum thermocouples)
Moving surface probes, 152

N

Nickel-chromium thermocouple types (see also Type K thermocouples), 49
Characteristics (Table), 51
“Chromel-Alumel,” 52
Comparative graph, 50
“Geminol,” 50
Nickel-chromium-silicon versus nickel-silicon, 53
“Thermo-Kanthal Special,” 52
“Tophel II-Nial II,” 52
Nickel-molybdenum types, 54
Extension wires for, 56
Graph of emf versus temperature, 55
Physical data (Table), 56
Nonstandard thermocouple types, 35

O

Ohm, Georg, 3
Ohm’s law, 11
Onsager, Lars, 12
Onsager relations, 8
Oven, constant temperature, 106
INDEX 255

P

Palladium-alloy thermocouples, 39
 Characteristics (Table), 43
 Thermal emf (Graph), 42
Peltier coefficient, 5
 Effect, 4
 Heating and cooling, 4, 7
 Voltage, 5
Peltier, Jean, 3
Platinel thermocouple, 46
 Characteristics (Table), 49
 Comparative graph, 48
Platinum-alloy thermocouples
 Annealing of, 117
 Comparative graphs, 40, 42,
 44, 48
 Extension wires for (Table), 36
 In comparison calibration, 126
 Nonstandard types of, 39, 42,
 45, 46
 Characteristics (Tables), 41,
 43, 45, 49
Standard types (see Types B, R, S)
Potentiometer, 97, 98
 Circuit for, 100
 Precision type, 100
 Laboratory, 100
 Plant, 101
 Portable, 101
 Recording, 101
 Semi-precision type, 101
Power series expansion coefficients
 for thermoelectric voltages,
 217-220
Prandtl number, 146
Precision of set of data, 239
Probability plot, 244
 Illustration, 245, 246
Protecting tube, thermocouple
 62, 66
 Assembly (Illustration), 74
 Ceramic, 72
Protecting tube, thermocouple
 (continued)
 Installation effects of, 147
 Metal, 69
 Metal ceramic, 73
 Selection guide (Table), 75-79
R
R, thermocouple type, 20
 Application, 24
 Chemical composition (Table), 26
 Electrical resistance (Table), 33
 Change of with temperature
 (Table), 32
 Emf versus temperature
 Graph, 34
 Tables, 196-204
 Environmental limits (Table), 27
 Extension wires for (Table), 36
 Physical properties (Table), 30
 Power series expansion for, 219
 Seebeck coefficients (Table),
 23, 29
 Trade names for, list of, 25
 Upper temperature limits
 (Table), 28
 Ramp change in temperature, re-
 sponse to, 144
 Graph, 144
 Recalibration of used thermoele-
 ments, 130
 Recording potentiometer, 101
 Recovery, adiabatic, of moving gas,
 145
Reference junction, 103
 Automatic ice point type, 106
 Compensation for, 103
 Constant temperature oven type,
 106
 Electrical compensation for, 107
 Errors arising in, 109
 Ice point cell type, 104
 Illustration, 105
Reference junction (continued)
 Mechanically compensating type, 108
 Triple point cell type, 104
 Zone box type, 107
Reference tables
 For cryogenic range, 223-235
 For standard types, 165-217
 List of standardized, 163
Reference thermometer, 116
Regression analysis, 245
Regression line for set of data, 240
Response time, thermocouple, 143
Rhenium-tungsten thermocouples
 (see Tungsten-rhenium)
Rhodium alloy thermocouples
 Characteristics (Table), 41, 47
 Comparative graphs for, 40, 46
 Nonstandard types, 39, 43, 45
 Standard types (see Types B, R, S)
Seebeck coefficient, 4, 103
Seebeck effect, 3, 5, 7
Seebeck, Thomas, 3
Sheathed thermocouples, 81
 Applications, 94
 Compatibility of materials in, 85
 Table, 87
 Connections for (Illustration), 94
 Dimensions for
 Graph, 83
 Tables, 88
 Expansion, thermal, coefficients
 (Table), 84
 Exposed junctions for, 89
 Illustration, 93
 Fittings for (Illustration), 95
 Grounded junctions for, 89
 Illustration, 93
 Precautions in use of, 85
 Reduced-diameter junctions for, 89
 Illustration, 93
 Sheath material properties
 (Table), 86
 Sheaths for, 85
 Terminations for, 94
 Testing of, 89
 Table, 90-92
 Thermowells, installation in
 (Illustration), 95
 Ungrounded junctions for, 93
 Illustration, 93
 Wires for, 85
 "Single-wire" thermocouple, 150
Specimen, calibration test, 137
Standard cell, 102
Standard thermocouple types, 20, 162
Statistical analysis of measurements, 237
Step change in temperature,
 response to, 143
 Graph, 144
Stirred liquid baths, calibration in, 129

S

S, thermocouple type, 20
 Application, 24
 Chemical composition (Table), 26
 Electrical resistance (Table), 33
S, thermocouple type
 Change of resistance with temperature (Table), 32
 Emf versus temperature
 Graph, 34
 Tables, 205-213
 Environmental limits (Table), 27
 Extension wires for (Table), 36
 Physical properties (Table), 30
 Power series expansion for, 220
 Seebeck coefficients (Table), 23, 29
 Trade names for, list of, 25
 Upper temperature limits
 (Table), 28
Scale, temperature, 112
Surface probes, 151
Analysis of errors in, 154
Commercial types of, 156
Errors in, 153
For current-carrying surfaces, 153
Minimizing errors in, 156
Surface temperature measurement,
148
Installation methods for, 149

T
T, thermocouple type, 20
Application, 20
Chemical composition (Table), 26
Electrical resistance (Table), 33
Change of with temperature (Table), 32
Emf versus temperature
Graph, 34
Tables, 214–217
Environmental limits (Table), 26
Extension wires for (Table), 36
Physical properties (Table), 30
Power series expansion for, 217
Seebeck coefficients (Table),
23, 29
T, thermocouple type (continued)
Trade names for, list of, 25
Upper temperature limits
Graph, 22
Table, 28
Temperatures, intermediate, law of,
14
Illustration, 16
Terminology, 248
Thermal expansion coefficients
(Table), 84
Thermal time constant, 143
Thermocouple reference tables, list
of, 163
Smoothing of, 163
Generation of, 220
Thermocouple reference tables, list
of (continued)
Coefficients for generating,
217–220
Thermodynamics, laws of, 7
Thermoelectric theory, 3
Thermoelement designations and
trade names, list of, 25
Thermoelements, 62
Illustration, 64
Thermometer, reference, 116
Thermowells, 71
Installation effects of, 146
Selection guide (Table), 75–79
Types of (Illustration), 72
Thompson (see also Kelvin), 3
Thompson coefficient, 6
Thompson effect, 6
Thompson, William, 3
Time constant, thermal, 143
Triple point cell, 104
Tube, protecting (see protecting
tube)
Two potentiometer calibration
method, 127
Tungsten-rhenium thermocouple
types, 54
Characteristics of (Table), 59
Emf versus temperature (Graph),
58
Extension wires for (Table), 36
Uncertainties in calibration of
(Tables), 123, 124
Types, thermocouple standard,
20, 162

U
Uncertainties
In calibration, 121
In measurement, 237
Uncertainty envelope, 134
Plots of, 134, 136, 137
Uncertainty of set of data, 239
Upper temperature limits (Table), 21
V
Variance of set of data, 239
Volta, Alessandro, 3

Z
Zener diode, 102
Zone box type reference junction, 107