Nonlinear fracture mechanics.

(STM; 995)

"ASTM publication code number (PCN) 04-995002-30."

Includes bibliographies and indexes.

Copyright © by American Society for Testing and Materials 1988

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers’ comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.
Dedication

It was with great sorrow that we learned of the death of William “Gomer” Pryle on July 6, 1987. Although Gomer seldom sought or received much public recognition for his work, he was a vital part of a team which advanced fracture mechanics from the earliest days. We have lost a great friend, one who enriched the lives of his fellow workers and made working in fracture mechanics a constant pleasure.

Gomer grew up near Pittsburgh, Pennsylvania, and served in the U.S. Air Force from 1947 to 1951. He began his technical career at Westinghouse R & D Center in February 1952, where he continued working until his death. During most of his career at Westinghouse he was part of a widely recognized team, headed by Ed Wessel, which made numerous contributions to the advancement of testing, analysis, and applications of fracture mechanics technology. Although his work is reflected in many places in the fracture mechanics literature, his contributions are not always readily apparent. The work was presented anonymously and can be recognized only by those associates of his who remember his contributions. This is most notable in fracture toughness test standards where, beginning with the development of the compact specimen and the ASTM E 399 K_f test standard, his work on specimen design, machining, and precracking technique played a vital role in making this standard a model for those which would follow. He played a similar role in some of the newer fracture mechanics test standards, contributing to ASTM Standards E 647, E 813, and E 1152. Some of his important contributions include:

- Development of fracture mechanics specimen designs with emphasis on machining practices, including dimensions and tolerances.
• Development of testing and analysis techniques, including instrumentation, data recording, analysis, and reporting.

• Development of modern precracking techniques, taking the process from the earliest approach of thermal-mechanical induced cracking to the modern computer-controlled fatigue precracking techniques.

• Development of precracking techniques for difficult materials, including beryllium alloys and ceramics.

• Development of systems for identifying specimen size and orientation.

• Development of modern specimen inventory control methods.

• Author or coauthor of 36 fracture mechanics papers and reports, most notably ones relating to the development of the compact specimen and the testing of large (12T) compact specimens.

Besides his technical career, Gomer was dedicated to his wife Barbara, his three children Lynn, John, and Barbie, and his granddaughter Debbie. He also showed his concern for people through his association with the fracture mechanics family at Westinghouse. He was a continual source of encouragement, bringing hope with his familiar, “Hang in there, Tiger.”

Now that he is gone, the world of fracture mechanics has lost a colleague whose contributions have advanced the technology in more ways than can be counted. Those of us who knew him have lost a great friend; we will miss him.
Foreword

The publication, *Nonlinear Fracture Mechanics: Volume II—Elastic-Plastic Fracture*, contains papers presented at the Third International Symposium on Nonlinear Fracture Mechanics, which was held 6–8 Oct. 1986 in Knoxville, Tennessee. ASTM Committee E-24 on Fracture Testing sponsored the event. The cochairmen for the symposium section on Elastic-Plastic Fracture were J. D. Landes, University of Tennessee, and J. G. Merkle, Oak Ridge National Laboratory. Both men, along with A. Saxena, Georgia Institute of Technology, served as editors of this publication.
Contents

Overview 1

ANALYSIS

Experimental and Numerical Validation of a Ductile Fracture Local Criterion Based on a Simulation of Cavity Growth—JEAN-CLAUDE DEVAUX, FRANCOIS MUDRY, ANDRÉ PINEAU, AND GILLES ROUSSELIER 7

Numerical Comparison of Global and Local Fracture Criteria in Compact Tension and Center-Crack Panel Specimens—FRANCOIS MUDRY, FRANCOISE DI RIENZO, AND ANDRÉ PINEAU 24

Evaluation of Crack Growth Based on an Engineering Approach and Dimensional Analysis—JEAN BERNARD 40

Comparison Between Experimental and Analytical (Including Empirical) Results of Crack Growth Initiation Studies on Surface Cracks—WALTER G. REUTER 59

Defect, Constitutive Behavior, and Continuum Toughness Considerations for Weld Integrity Analysis—PETER MATIC AND MITCHELL I. JOLLES 82

Plasticity Near a Blunt Flaw Under Remote Tension—DENNIS M. TRACEY AND COLIN E. FREESE 93

Nonlinear Work-Hardening Crack-Tip Fields by Dislocation Modeling—FERNAND ELLYIN AND OMOTAYO A. FAKINLEDE 107

FRACTURE TOUGHNESS

Geometry Effects on the R-Curve—JOHN D. LANDES, DONALD E. MCCABE, AND HUGO A. ERNST 123

Evaluating Steel Toughness Using Various Elastic-Plastic Fracture Toughness Parameters—ALEXANDER D. WILSON AND J. KEITH DONALD 144
Evaluation of Attempts to Predict Large-Crack-Growth J-R Curves from Small-Specimen Tests—CHARLES W. MARSCHALL, VICTORIA PAPASPYROPOULOS, AND MARK P. LANDOW 169

Fracture Mechanics Tests on Welded Joints—MICHAEL G. DAWES, HENRYK G. PISARSKI, AND STEPHEN J. SQUIRRELL 191

Elastic-Plastic Fracture Mechanics Evaluations of Stainless Steel Tungsten/Inert-Gas Welds—MICHITAKO NAKAGAMI, CHARLES W. MARSCHALL, AND FREDERICK W. BRUST 214

Effect of Prestrain on the J-Resistance Curve of HY-100 Steel—ISA BAR-ON, FLOYD R. TULER, AND WILLIAM M. HOWERTON 244

APPLICATIONS

A Viewpoint on the Failure Assessment Diagram—DONALD E. MCCABE 261

Simplified Procedures for Handling Self-Equilibrating Secondary Stresses in the Deformation Plasticity Failure Assessment Diagram Approach—JOSEPH M. BLOOM 280

Further Developments on the Modified J-Integral—HUGO A. ERNST 306

Stable Crack Growth and Fracture Instability Predictions for Type 304 Stainless Steel Pipes with Girth Weld Cracks—JOSEPH W. CARDINAL AND MELVIN F. KANNINEN 320

A Methodology for Ductile Fracture Analysis Based on Damage Mechanics: An Illustration of a Local Approach of Fracture—GILLES ROUSSELIER, JEAN-CLAUDE DEVAUX, GÉRARD MOTTET, AND GEORGES DEVESA 332

A Closer Look at Tearing Instability and Arrest—JAMES A. JOYCE 355

Crack Growth Instability in Piping Systems with Complex Loading—JAMES E. NESTELL AND ROBERT N. COWARD 371

Critical Depth of an Internal or External Flaw in an Internally Pressurized Tube—BRIAN W. LEITCH 390

Use of a Ductile Tearing Instability Procedure in Establishing Pressure-Temperature Limit Curves—KENNETH K. YOON, JOSEPH M. BLOOM, AND W. ALAN VAN DER SLUYS 404

Prediction of Critical Crack Size in Plastically Strained Welded Panels—JOHN D. G. SUMPTER 415

A Study of the Initiation and Growth of Complex Cracks in Nuclear Piping Under Pure Bending—GREGORY S. KRAMER AND VICTORIA PAPASPYROPOULOS 433
Elastic-Plastic Assessment of a Cladded Pressurized-Water-Reactor Vessel Strength Since Occurrence of a Postulated Underclad Crack During Manufacturing—JEAN-CLAUDE DEVAUX, PATRICK SAILLARD, AND ANDRE PELLISSIER-TANON 454

An Analytical and Experimental Comparison of Rectangular and Square Crack-Tip Opening Displacement Fracture Specimens of an A36 Steel—WILLIAM A. SOREM, ROBERT H. DODDS, AND STANLEY T. ROLFE 470

MODELS AND MECHANISMS

Metallurgical Aspects of Plastic Fracture and Crack Arrest in Two High-Strength Steels—JOHN P. GUDAS, ROBERT B. POND, AND GEORGE R. IRWIN 497

Effect of Fracture Micromechanisms on Crack Growth Resistance Curves of Irradiated Zirconium/2.5 Weight Percent Niobium Alloy—C. K. CHOW AND LEONARD A. SIMPSON 537

A Combined Statistical and Constraint Model for the Ductile-Brittle Transition Region—TED L. ANDERSON 563

Kinetics of Fracture in Fe-3Si Steel Under Mode I Loading—MICHAEL H. BESSENDORF 584

Separation of Energies in Elastic-Plastic Fracture—MARION F. MECKLENBURG, JAMES A. JOYCE, AND PEDRO ALBRECHT 594

INDEXES

Author Index 615

Subject Index 617