PROPERTIES OF MATERIALS FOR LIQUEFIED NATURAL GAS TANKAGE

A symposium presented at May Committee Week
AMERICAN SOCIETY FOR TESTING AND MATERIALS Boston, Mass., 21-22 May 1974

ASTM SPECIAL TECHNICAL PUBLICATION 579
J. G. Kaufman, symposium chairman

List price $39.75
04-579000-30
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

Related
ASTM Publications

Fatigue and Fracture Toughness—Cryogenic Behavior, STP 556 (1974),
$20.25 (04-556000-30)

Fracture Toughness Testing at Cryogenic Temperatures, STP 496 (1971),
$5.00 (04-496000-30)

Cryogens and Gases: Testing Methods and Standards Development, STP 537
(1973), $6.25 (04-537000-41)
A Note of Appreciation to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications
Editorial Staff

Jane B. Wheeler, Managing Editor
Helen M. Hoersch, Associate Editor
Charlotte E. Wilson, Senior Assistant Editor
Ellen J. McGlinchey, Assistant Editor
Contents

Introduction 1

Materials and Liquefied Natural Gas—M. J. WEISS 3
 Liquefied Natural Gas 3
 Materials 5
 Overall Capacity and Costs 8

Significance of Defects in Liquefied Natural Gas Tanks in Ships—
 P. TENGE, O. SOLLI, AND O. FÖRLI 10
 Nomenclature 10
 Materials 12
 Fatigue Crack Propagation 12
 Fracture Toughness and Critical Crack Sizes 16
 Defects in 9Ni Steel Welds 19
 Defects in 5083 Al Welds 21
 NDT, Possibilities and Limitations in Defining Size of
 Planar Defects 24
 Fracture Mechanics Analysis Procedure for Calculating
 Fatigue Crack Propagation 25
 Establishment of Acceptance Criteria 33
 Concluding Remarks 41

Crack Growth and Fracture of Thick 5083-0 Plate Under Liquefied
 Natural Gas Ship Spectrum Loading—R. A. KELSEY,
 R. H. WYGONIK, AND PER TENGE 44
 Material 46
 Tensile and Fracture Toughness Properties 46
 Tests of Large Plate-Type Specimens 56
 Leak Tests 70
 Fracture Toughness Tests 74
 Conclusions 74

Fatigue Crack Growth Rate of Thick 5083-0 Plate at Room and Low
 Temperatures—N. L. PERSON AND G. C. WOLFER 80
 Materials and Procedures 81
 Results and Discussion 85
 Summary and Conclusions 92
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue Crack Growth and Fracture Toughness of 5083-0 Aluminum Alloy</td>
<td>G. Argy, P. C. Paris, and F. Shaw</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Nomenclature</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Experimental Approach</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td>131</td>
</tr>
<tr>
<td>Fracture Toughness and Fatigue Properties of 5083-0 Plate and 5183</td>
<td>J. G. Kaufman and R. A. Kelsey</td>
<td>138</td>
</tr>
<tr>
<td>Welds for Liquefied Natural Gas Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Weld Preparation and Qualification</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Test Procedures</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>151</td>
</tr>
<tr>
<td>Strength and Fracture of 5083-0 Aluminum Weldments</td>
<td>R. E. Zinkham and R. F. Ashton</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Procedures</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Discussion of Results</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>173</td>
</tr>
<tr>
<td>Toughness Variations Through the Thickness of Thick 5083-0 Aluminum</td>
<td>R. L. Lake</td>
<td>176</td>
</tr>
<tr>
<td>Alloy Plate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Specimens</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Procedure</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Results and Discussion</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>188</td>
</tr>
<tr>
<td>Design Stresses for Aluminum Alloy 5083-0 and 5183 Welds at Cryogenic</td>
<td>K. O. Bogardus and R. C. Malcolm</td>
<td>190</td>
</tr>
<tr>
<td>Temperatures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials and Test Procedure</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Test Results</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Development of Allowable Stress for 5083-0 at Cryogenic Temperatures</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Allowable Design Stresses for Welded 5083 Plate at Cryogenic Temperatures</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>Fatigue Properties Determined Using Small-Size Specimens</td>
<td>208</td>
</tr>
</tbody>
</table>
Fatigue Properties Determined Using Large-Size Specimens 208
Fatigue Strength of Equator Ring 213
Relation Between Crack Initiation Life and Failure Life 214
Characteristics of Fatigue Crack Propagation in Rolled 9Ni Steel 215
Geometry of Through Crack Produced in Surface-Notched Specimen 217
Relation Between Crack Propagation Rate and Stress Intensity Factor 219
Fractography and Microscopic Crack Growth Rate 220
Brittle Fracture Behavior of Base Metal 222
Fracture Characteristics of Welded Joints 225
Structural Integrity of Spherical LNG Tank 230
Conclusions 236

Fatigue Crack Growth Rate Studies of Partial Thickness Cracks in ASTM Method A 645-74, Five Percent Nickel Steel—
D. E. McCABE, D. A. SARNO, AND C. E. FEDDERSEN 238
Material 239
Specimens 241
Instrumentation and Procedure 241
Experimental Methods to Measure Crack Growth 241
Constant Amplitude Program 244
Results of Constant Amplitude Fatigue 246
Variable Amplitude Fatigue Crack Growth 251
Retardation 253
Experimental Results 255
Conclusions 257

Low Temperature Fracture Behavior of Iron-Nickel Alloy Steels—
Experimental Procedures and Apparatus 263
Results 270
Discussion 284
Summary 285

Strength and Fracture Toughness of Nickel Containing Steels—
A. G. HAYNES, K. FIRTH, G. E. HOLLOX, AND J. BUCHAN 288
Materials for Test 290
Test Procedure 293
Results and Discussion 293
Conclusions 321

Newly Developed Welding Material for Liquefied Natural Gas Application—T. NISHI, S. SAITO, T. NAKANO, AND Y. HORII 324
Composition Design of MIG Welding Wires
Commercial Performance Test
Conclusions

Cryogenic Toughness Through Microstructure Control in an Iron-Nickel-Titanium Alloy—SUNGH0 JIN, B. WHITAKER, J. W. MORRIS, JR., AND V. F. ZACKAY
Alloy Selection
Process Selection
Materials Preparation and Processing
Effect of Processing on Mechanical Properties
Conclusions

Materials and Experimental Procedure
Results and Discussion
Conclusions

Strain-Cycling Fatigue Behavior of Ten Structural Metals Tested in Liquid Helium, Liquid Nitrogen, and Ambient Air—A. J. NACHTIGALL
Materials, Apparatus, and Test Procedure
Data Analysis and Fatigue Life Predictions
Results and Discussion
Summary of Results

Experimental
Results
Discussion
Conclusions

General Discussion on the Toughness of Nine Percent Nickel Steel—ARNE OMSEN
Experimental
Comparison Between Toughness at -162 and -196°C
Experience from Current Production of UHB 2N90
Conclusions