Index

A

Acoustic emission, 205–223

Aluminum

2014-T651, compact tension specimens of, 12
2124-T851, specimen size effects on K_{IC}, 123
6061-T651, specimen size effects on K_{IC}, 124
7075-T651, K_{IC} for, 107
7079-T6, comparison of compact tension and chevron notch for, 25
7475-T7351, specimen size effects on K_{IC}, 125, 248, 255–268

Aluminum alloys

Comparison of test methods for, 193–204
Short-bar toughness for, 237–254

Aluminum oxide, fracture toughness of, 270–280
ASTM Standard B 276, 284, 298
ASTM Standard B 645, 241
ASTM Standard B 646, 237, 252
ASTM Standard D 2264, 159
ASTM Standard D 2936, 159
ASTM Standard E 112, 272
ASTM Standard E 399, 7, 14, 33, 102, 177, 188, 194, 237–238, 255, 273

Comparison for aluminum, 12

Specimen geometry requirements, 118
ASTM Standard E 561

B

Baratta, Frances J., Ed., 1, 339
Barker, L. M., 117, 324
Bar-On, I., 98
Beech, J. F., 152
Bluhm slice model, 9, 28, 101, 176, 318

Boundary integral method, 22, 38, 69–79

Equations for, 71
Brass (60/40), K_{IC} for, 107
Brown, K. R., 237
Buhr, M. L., Jr., 134

C

Cemented carbides (see Tungsten carbide)

Chevron notched bend bars

Comparison of analytical and experimental K_I calculations, 98–112
K_{IC} on glass, 167–175
Polymer concrete, 310–322
Stress intensity factor for, 25

Chen Tzenguang, 193
Chona, R., 81
Chuck, L., 167
Compact tension specimens
Aluminum alloys, 12, 255–268
Comparison with chevron-notched specimens, 193–204
Westerly granite, 160
Coyle, R. T., 134
Cutler, R. A., 281

D
Double cantilever beam specimen, 149, 330

E
Elastic-plastic analysis, 121
Electrodischarge machining, 184, 303
Eschweiler, J., 255

F
Finite element technique, 22, 32–48, 49–67
Flat jack (see also Fractometer), 41, 119, 131, 147, 305
Fractometer, 119, 306
Freiman, Stephen W., Ed., 1, 167, 339
Fuller, E. R., Jr., 167, 309

G
Gerstle, W. H., 49
Ghosh, L. J., 69
Glass
Corning 7809
Crack growth data for, 147
K_{ic} for, 148
Float
Crack growth data for, 145
K_{ic} for, 148
Fused quartz, specimen calibration using, 47, 146
Soda lime, K_{ic} for, 170
Vitreous silica, K_{ic} for, 170

Glass ceramics, 329
Gunsallus, K. L., 152

H
Han, T.-Y., 49
Hastelloy C-276, bonding to glass ceramic, 320
Hayes, G. A., 205
Hong, J., 297
Huang, Y.-P., 49

I
Indiana limestone, K_{ic} of, 159
Ingraffena, A. R., 49, 152
Inhomogeneities, effect on toughness variations in aluminum, 252
Interfaces, toughness of ceramic metal, 324–335
Irwin-Kies relation, 177

J
Jones, D. P., 281

K
Krause, R. F., Jr., 309

M
Marci, G., 255
Mecholsky, J. J., 324
Mendelson, A., 69
Microstructure, of steels, 209–210
Molybdenum, bonding to glass ceramic, 329
Munz, D. G., 255, 270

N
Nelson, D. P., 152
Newman, J. C., Jr., 5, 32
INDEX 347

P

Perucchio, R., 49
Photoelastic techniques, 81–96
 Model for, 82
PMMA, K_{ic} for, 107
Poisson’s ratio, effect on compliance, 47
Polymer concrete, toughness of, 309–322
Pook equation, 8, 25–29, 109, 118

R

Raju, I. S., 32
Residual stresses, due to finishing, 292
Rising crack growth resistance curve, 26
 Aluminum, 245
 Aluminum oxide, 274–280
 Polymer concrete, 319–322
 Schematic of, 27
Rocks, fracture toughness testing of, 152–165
Roman, I., 98

S

Sakai model, 101
Sanford, R. J., 81
Schwartzhopf, P., 297
Shannon, J. L., Jr., 270
Short-bar specimens, 11
 Aluminum oxide, 270–280
 Boundary integral method applied to, 69–79
Dimensions for, 34
 Finite element analysis of, 32–38
 Photoelastic calibration of, 81–96
 Toughness of aluminum alloys from, 193–204, 237–254, 255–268
 Toughness of ceramic-metal interface using, 330
 Toughness of steels from, 193–204
Short rod specimens, 11
 Acoustic emission from, 205–223
 Dimensions for, 34, 118
 Experimental analysis for, 14, 15
 Finite element analysis of, 32–48, 49–67
 For aluminum oxide, 270–280
 For testing of rocks, 152–165
 For tungsten carbides, 281–295, 297–307
 Of polymer concrete, 310–322
 To determine K_{TV} curve, 135–150
 Toughness of steels from, 193–204
Shumaker, C. A., Jr., 281
 Single edge notch bend test, 159, 303
Slow crack growth
 Determination of, 135–150
 Effect on K_{ic}, 174
Specimen size
 Effects on measured fracture toughness, 117–131
 Limitations for K_{ic} determination, 253
Stainless steel (17-4), specimen size effects on K_{ic}, 126
Steel
 15-5 PH, K_{ic} and acoustic emission, 217
 4140, hardened, K_{ic} for, 107
 4340, specimen sizes effects on K_{ic} for, 126
 A151-440C, K_{ic} and acoustic emission, 217
 A151-4140 K_{ic} and acoustic emission, 217
 D6AC, K_{ic} and acoustic emission, 217
 GCr15 bearing, 187
Steel alloys, comparison of test methods for, 193–204
Stokes, J. L., 205
Straight through crack assumption, 8, 100, 169, 178, 194–196, 315
Stress intensity factor, 37
Calculation by photoelastic techniques, 89
Calculation for chevron notched bend specimen, 98–111
Calculation from finite element analysis, 58
Calculation using boundary integral method, 74–77
Calculation using compliance technique, 181–187
Variation along crack front, 62

T
Three-point bend specimens, comparison with chevron notch, 194–204
Titanium (Ti-6Al-4V), specimen size effects of K_{IC}, 127
Tuler, F. R., 98
Tungsten carbide-cobalt alloys, fracture toughness of, 281–296, 297–307
Tunnel boring machine, 152
Underwood, John H., Ed., 1, 339
W
Wang Chichi, 193
Westerly granite, K_c of, 159
Work of fracture test, 7, 17
Wu Shang-Xian, 176
Y
Yuan Maochan, 193