Subject Index

A

Adaptation, 14, 20, 103–104
 ambient, 14, 20–21
 effects of concentration on, 22
 laboratory, 21–22
 ozone and SO2 threshold level exposures, 21–22
Aerosols
 breath-holding test, respiratory maneuver, 62
 decay curves during rebreathing, 66
 measuring mucociliary clearance, 66–70
 screening tests for airway obstruction, 65–66
 used as probes of airway and air space dimensions, 62–65
Age, effect on response to pollutants, 14, 19–20
Air quality criteria document, 2
Air spaces
 aerosols as probes of, 62–65
 mean effective dimension of, 64
 size, intersubject coefficient of variation, 61
Airway
 asthmatic subjects, 45, 53
 baseline caliber differences, 57
 change in conductance from sulfate aerosol exposure, 49–50
 defenses, 41
 deposition of tagged particles, 61
 inflammation of, 54
 nasal, 39
 obstruction, aerosol use as screening tests, 65–66
 oronasal, 39
 peripheral function, 48
 reactivity, 44–45
Airway resistance, 54
 asthmatics, SO2
 encumbered breathing, 133
 exercising, 132
 unencumbered breathing, 124, 136
correlation with symptom dose-response relationship, 79–80
effects of exercise in asthmatics, 123, 125–127, 129
measurement of, 46–47
regression equations for, 114
Airway responsiveness
 acute effects of pollution on, 55–57
 change measurement, 56
 inhaled agents, 54
 bronchoconstrictor stimuli, 54–55
 hyperresponsiveness of asthmatic subjects, 53
 measurement, 53–57
 methods, 54–55
 transient alteration, 56
Airway space
 aerosols as probes, 62–65
 size
 intersubject coefficient of variation, 61
 measurement with aerosols, 60
 variability among healthy people, 63
Ambient adaptation, effect of season on, 14, 20–21
Arachidonate metabolism and ozone, 101, 104
Asthmatic subjects
adolescents, exercise-induced bronchospasm, susceptibility to inhaled SO₂, 85, 87
airway resistance (see Airway resistance)
airway responsiveness, 53
bronchoconstriction and drug concentrations, 55
comparison of individual and group mean values, 130
exercising regression results, 139
SO₂ response, 85, 87
mean and standard deviation per subject, 131
measurement of respiratory impedance by forced white noise, 12
relationship between airway reactivity and responsiveness to H₂SO₄, 45
Atopic adolescents
classification, 86
effects of pollutants on, without exercise-induced bronchospasm, 90
incidence, 90

B
Behavioral responses, 44
Blood biochemistry, as index of pulmonary response, 44
Bonferroni inequality correction, 12
Bronchodilator drugs, effect on airway responsiveness, 56
Bronchoconstriction
cold dry air effects on, 16
enhancement of response by ozone, 103
stimuli producing, 54–55

C
Chronic lung disease
deposited particles, 103
inflammatory response, 104
nodulation, 103
pathogenesis, 100–105
potential role of environmental agents, 101
Chronic obstructive pulmonary disease, exposure studies, 92–98
bronchial hyperreactivity as predisposition to, 45–46
characteristics of, 92–93
exposure studies
intercurrent medication usage, 95–96
limited tolerance to secondary stresses, 95
noise level minimization, 96
priorities of concern, 92, 94
smokers, value of studies of, 96
subject selection and characterization, 94–95
problems in studying people, 93–96
risk of harm, 93–94
Circadian variations, effect on response to pollutants, 14, 17
Clean Air Act
background, 4–5
purpose, 85
Clean air exposure, hot conditions, 15
Clinical research
basic and applied, 2
Data aggregation (see Data aggregation)
experimental design (see Experimental design)
extrapolation of data, 101
host factors, 102
overview, 2
respiratory epithelium, 104–105
secondary effects of reactions to environmental agents, 101
use of special animal models, 104
CO (carbon monoxide)
 breath concentrations, 97
effects of age on response to, 19
 studies in smokers and people with COPD, 92–98
Consensus protocols, 9–10
COPD (see Chronic obstructive pulmonary disease)
Criteria document, 2, 5

D
Data aggregation, 117–147
 choice of effects parameters, 121–122
 consideration of dose, 120
 determination of effects, 122–129
 development of a unified integrative format, 120–122
 independent confirmation, 119
 quantitative rigor, 118–119.
 real-world relevance, 119
 replicability, 119–120
 response of FEV to ozone in normal exercising subjects, 140–144
 response of \(G_{aw} \) to ozone, 144–146
 response of specific airway resistance to \(SO_2 \), 132–140
 results out of line, 120
 sham percentage of change, 122, 124, 129
 versus sham exposure, 124, 128
study selection, 118–120
use of group mean versus individual subject data, 129–132
Deposition patterns of inhaled toxicants, 61–62
Discomfort meter, 80
Dose-response relationship, 10–11
 biological significance, 11
 individual variance, 13
 influence of nondisease factors, 14–22
Double-blind protocol, 50

E
Environmental stress, effects on response to pollutants, 102
Exercise, effect on air resistance in asthmatics, 123, 125–127, 129
Exercise protocols (see also Ventilation) 25–34
 continuous and intermittent, effects on pulmonary functions, 26
duration in relation to maximum aerobic capacity, 29, 32
effects of prior exercise and timing of measurements, 26–27
examples, 30–31
factors that influence results and interpretations, 29
 intensity of exercise, 34
 major considerations, 29
timing of physiological measurements, 34
work load selection, 32
Experimental design, 9–13, 101
 Bonferroni inequality correction, 12
 combining studies, 115
 comparison of individual responses, 11
 consensus protocols, 9–10
 designing comparison studies, 110–113
double-blind protocol, 50
 exercise protocols (see Exercise protocols)
experimental protocols, 9
 hypothesis testing, types of, 10
 inference issues, 115
 measuring the response, 3
 mechanism elucidation versus descriptive study, 11–12
 mechanism of pollutant action studies, 9
 mechanistic studies, 11
Experimental design (cont.)
paired and unpaired designs, 110–111
protocol development, 50–51
randomized block design (see Randomized block design)
regression studies, 113–114
sample size, 109, 113
scientific method, 9
statistical considerations, 3–4, 109–116
statistical power of study, 12
subpopulations, 114
techniques and tests, 12
t-test results to ozone in normal exercising subjects, 143
Extrapolation of data, soundness of, 101

F
Forced expiratory volume, response to ozone in normal exercising subjects, 140–144
Forced vital capacity measurements of, 47–48
reduction with heat exposure or prolonged exercise, 16
wet-bulb globe temperature index analysis, 15
Formaldehyde, impairment of nasal function, 41

G
Gender, effect on response to pollutants, 14, 17–19
amount of pollutant in relation to lung size, 17–18
female susceptibility, 18
oxidant response in relation to, 25

H
Hardwood dust, impairment of nasal function, 41
Histamine, bronchoconstrictor responses, 55
Homeostatic mechanism, 101–102
\(\text{H}_2\text{SO}_4 \)
airway reactivity and responsiveness to, 45
effects on mucociliary clearance, 68–69
Humidity, effect on response to pollutant exposure, 14–16
Hypothesis testing, types of, 10

I
Index of dispersion, comparison in smokers and nonsmokers, 65
Inspiratory path to lungs, 39–42
air modification during oronasal breathing, 41
nasal, 40–41
oral, 40–41
oronasal, 40–41

L
Leukocytes, polymorphonuclear, accumulation and ozone exposure, 104
Leukotriene \(B_4 \), 104
Lungs
chronic disease of (see Chronic lung disease; Chronic obstructive pulmonary disease)
inspiratory path, 39–42

M
Maximal expiratory flow, 54
Mechanistic studies, 11
Methacholine, bronchoconstrictor responses to, 55
Mucociliary clearance aerosols, use for measuring, 66–70
alteration of rates, 44
animal studies, 69–70
deposition of tagged particles, 61
effects of H$_2$SO$_4$ on, 68–69
significance of pollutant-induced alterations, 70
thoracic retention, 67–68
use of aerosols for measuring, 60

N
NaCl aerosol
 change in pulmonary function, exercise tests, 88
 inhalation effects in adolescents, 89
National ambient air quality standards, 4–5
Neurophysiologic responses, 44
NO$_2$, effects of age on response to, 19
Nodulation, significance of, 103
Nose
clearance, 41
defenses, screening of workers for effectiveness of, 41–42
impaired function and pollutants, 41
inspired air modification, 39
physiology, 40
proportion of airflow, 40

O
Oxidants
 arachidonate metabolism, 101, 104
effects on response to environmental agents, 102
episodes, during summer inversions, 15
response to and gender, 25
Ozone
 adaptation to, 11, 20
 and chronic lung disease, 100
diphasic response pattern to, 103–104
dose-response studies, symptom-score results, 79–80
effects of age on response to, 19
enhancement of airway response to bronchoconstrictors, 103
importance of activity during exposure to, 26
interindividual variability in decrease of vital capacity, 102
laboratory adaptation to, 21
mucociliary clearance effects of, 70
no-effects level of, 11
polymorphonuclear leukocyte accumulation, 104
response in normal exercising subjects, 140–144
response of G_{aw} to, 144–146
resting exposure to and gender, 18
studies of effects of on people with COPD, 94
on smokers, 97
symptom data, 73
t-test results, 143

P
Particle deposition, 103
mechanisms of, 61–62
Peroxyacetyl nitrate, effects of age on response to, 19
Pulmonary function
 changes, 12–13
 choice of tests, 48–49
 continuous and intermittent exercise effects on, 26
decrements in active individuals, 25
exercise protocols, 25
interpretation of changes, 44–46
parameters, 43–51
tests
double-blind protocol, 50
exposure-response relationship, 49
protocol development, 50–51
timing and measurement and effects of exercise on, 27
Randomized block design, 109, 111
alternative t-tests, power comparisons, 112
one factor at four levels, 112
two factors at two levels, 111–112
use of, 113
Regression analysis, 109
Regression equations, relating airway resistance to exposure, 114
Regression studies, 113–114
Respiratory epithelium, 104–105
Responsiveness, diminished (see Adaptation)

Sample size, 109
power considerations for, 113
Sham exposure method, 122, 124
Smokers (see also Chronic obstructive pulmonary disease)
exposure studies, 92–98
problems in studying, 96–97
Smoking
pulmonary health effects, 102–103
stopping before and during exposure, 97
SO₂
adaptation to, 20
asthmatics, response to, 123, 125–127, 129
airway resistance in individual exercising asthmatics, 132
atopic adolescents, response to, 85–91
change in pulmonary function, exercise tests, 88
combined with cold air, 16
dose-response studies, symptom-score results, 81
effects of age on response to, 19
episodes, association with cool or cold conditions, 15
healthy adolescents, response to, 87, 89
impairment of nasal function, 41
individual symptom score changes, 80
laboratory adaptation to, 21
methods of symptom reporting, 75
response of specific airway resistance to, 132
responses of exercising asthmatics to, 137–138
symptom data, 73
Spirometry, confounding problem with, 48
Susceptibility
defined, 19
of individuals, study of, 3
Symptom data
collection and analysis, 73–81
dose-response studies with ozone and SO₂, 79–81
evaluation methods, 74–76
multiple-symptom, ordinal scoring procedure, 76–79
reliability, 74
response to irritant gases, 77
scoring procedure, 78
statistical analysis, 78

Temperature, effect on response to pollutant exposure, 14–16
Thoracic resistance, measurement of, 47
Threshold level exposures, adaptation to, 22
Tracheobronchial clearance, 41
Trend test, 113

Ventilation, 25
duration of measurement period, 29, 32
failure to measure exercise loads, 27–28
minute
difficulty in utilizing measurement with repeated or continuous exercise, 32
guestimates based on work load, 33
shift of patterns, 28
technical details of measurement during exercise, 29
Viral upper respiratory tract infections, effect on airway responsiveness, 56

W
White noise, forced, for measurement of respiratory impedance, 12