NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

Related
ASTM Publications

Electron Beam Microanalysis, STP 506 (1972),
$3.75 (04-506000-28)

Stereology and Quantitative Metallography,
STP 504 (1972), $9.75 (04-504000-28)

Manual on Electron Metallography, STP 547 (1973),
$5.25 (04-547000-28)
Contents

Introduction 1

Structure-Sensitive Properties of Materials Disclosed by a Combination of X-Ray Topography, X-Ray Diffraction Analysis, and Electron Microscopy Methods—SIGMUND WEISSMANN 4

Combination Method Based on X-Ray Divergent Beam Techniques 5
Contribution of the Back-Reflection Patterns to Precision Measurements of Interplanar Spacings 6
Computation of Stress-Strain Configuration of Strained Crystal; Applications and Limitations 7
X-Ray Line Profile Analysis, Selected Area X-Ray Topography Based on Transmission Patterns 8
Lattice Distortions and Fracture in Brittle Crystals Disclosed by Anomalous Transmission of X-Rays (Borrmann Effect) 10
Instrumentation of X-Ray Divergent Beam Combination Method 14
Study of Fracture Mechanism in Crystals by a Combination Method Based on X-Ray Pendellosung Fringes, Double-Crystal Diffractometry, TEM, and SEM 16
Discussion—Interplay of Component Techniques in Combination Methods 20
Conclusions 21

X-Ray Diffraction—A Versatile, Quantitative, and Rapid Technique of Metallography—LEO ZWELL 23
Specimen Preparation 24
Elemental Analysis 25
Phase Identification 29
Other Structural Characteristics 34
Conclusion 40

The Use of Hot-Stage Microscopy in the Study of Phase Transformations—B. L. BRAMFITT, A. O. BENCOTER, J. R. KILPATRICK, AND A. R. MARDER 43
Experimental Technique 43
Heating Stage 44
Applications 54

Examination of Materials by Coherent Light Techniques—R. J. SCHAEFER, J. A. BLODGETT, AND M. E. GLICKSMAN 71
Coherence 72
Optical Transforms 72
Holography 75
Optical Correlation 84
Summary 84

The Electron Microprobe as a Metallographic Tool—J. I. GOLDSTEIN 86
Electron Microprobe 87
Elemental Analysis 94
Scanning Electron Probe 103
Characterization of Phases 108
EMP Analysis of Phases 115
Extension of Instrument Capability 120

Transmission Electron Microscopy in Materials Research—M. G. H. WELLS
AND J. M. CAPENOS 137
Instrument Design Improvements 141
New Observation Techniques 141
Use of TEM in Structure-Property Relationships 144

High Voltage Electron Metallography—Achievements and Prospects—
A. SZIRMAE AND R. M. FISHER 169
Characteristics of High Voltage Microscopy 171
Applications 184
Future Developments 196

Microstructure Approach to Property Optimization in Wrought Super-
alloys—D. R. MUZYKA AND G. N. MANIAR 198
Alloys 199
Primary Manufacturing Steps 201
Phases in Wrought Superalloys and Metallographic Techniques 203
Microstructures and Properties 205
Recent Developments 206
Micrograin Processing 206
Structure Control Heat Treating 208
Minigrain Processing 210
Thermomechanical Processing 212
Summary 217

Phase Separation as a Technique for the Characterization of Superalloys
—O. H. KRIEGE 220
Specific Techniques for Phase Separation 221
Analysis of Separated Phases 225
Application of Phase Separation to Metallurgical Studies 227
Summary 233