FRACTOGRAPHY AND MATERIALS SCIENCE

A symposium
sponsored by
ASTM Committee E-24
on Fracture Testing
AMERICAN SOCIETY FOR
TESTING AND MATERIALS
Williamsburg, Va., 27–28 Nov. 1979

ASTM SPECIAL TECHNICAL PUBLICATION 733
L. N. Gilbertson, Zimmer, U.S.A., and
R. D. Zipp, International Harvester,
editors

ASTM Publication Code Number (PCN)
04-733000-30

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The symposium on Fractography and Materials Science was held on 27–28 Nov. 1979 in Williamsburg, Va. The American Society for Testing and Materials, through its Committee E-24 on Fracture Testing and Subcommittee E24.02 on Fractography and Associated Microstructures, sponsored the event. The symposium chairmen were L. N. Gilbertson, Zimmer, U.S.A., and R. D. Zipp, International Harvester, both of whom also served as editors of this publication.
Related
ASTM Publications

Crack Arrest Methodology and Applications, STP 711 (1980), $44.75, 04-711000-30

Fracture Mechanics: Twelfth Conference, STP 700 (1980), $53.25, 04-700000-30

Fracture Mechanics Applied to Brittle Measurements, STP 678 (1979), $25.00, 04-678000-30

Fracture Mechanics: Eleventh Conference, STP 677 (1979), $60.00, 04-677000-30

Elastic-Plastic Fracture, STP 668 (1979), $58.75, 04-668000-30

Fractography in Failure Analysis, STP 645 (1978), $36.50, 04-645000-30

Developments in Fracture Mechanics Test Methods Standardization, STP 632 (1977), $24.75, 04-632000-30

Fractography—Microscopic Cracking Process, STP 600 (1976), $27.50, 04-600000-30

Toughness and Fracture Behavior of Titanium, STP 651 (1978), $28.50, 04-651000-30

Evaluations of the Elevated Temperature Tensile and Creep Rupture Properties of 12 to 27 Percent Chromium Steels, DS 59 (1980), $24.00, 05-059000-40
A Note of Appreciation to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications
Editorial Staff

Jane B. Wheeler, Managing Editor
Helen M. Hoersch, Senior Associate Editor
Helen P. Mahy, Senior Assistant Editor
Allan S. Kleinberg, Assistant Editor
Contents

Introduction

<table>
<thead>
<tr>
<th>ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microstructural Origin of Flutes and Their Use in Distinguishing Striationless Fatigue Cleavage from Stress-Corrosion Cracking in Titanium Alloys—D. A. MEYN AND E. J. BROOKS</td>
</tr>
<tr>
<td>Influence of Microstructure and Environment on the Fatigue Crack Growth Fracture Topography of Ti-6Al-2Sn-4Zr-2Mo-0.1Si—J. A. RUPPEN AND A. J. McEVILY</td>
</tr>
<tr>
<td>A Fractographic Investigation of Stress-Corrosion Cracking in High-Strength Steel Alloys—F. W. FRASER AND E. A. METZBOWER</td>
</tr>
<tr>
<td>Fractographic and Microstructural Analysis of Stress-Corrosion Cracking of ASTM A533 Grade B Class 1 Plate and ASTM A508 Class 2 Forging in Pressurized Reactor-Grade Water at 93°C—V. PROVENZANO, K. TÖRRÖNEN, D. STURM, AND W. H. CULLEN</td>
</tr>
<tr>
<td>Hydrogen-Induced Brittle Fracture of Type 304L Austenitic Stainless Steel—G. R. CASKEY, JR.</td>
</tr>
<tr>
<td>Effect of Temperature on the Fracture Toughness Behavior of Inconel X-750—W. J. MILLS</td>
</tr>
</tbody>
</table>

Microstructure and Fatigue

Correlation of Fractographic and Microstructural Features—J. H. STEELE, JR.	117
Fractography of Laser Welds—E. A. METZBOWER AND D. W. MOON	131
Fractographic Comparison of Plane-Strain Fracture Toughness, Instrumented Precracked Charpy, and Slow-Bend Precracked Charpy Tests on a Quenched and Tempered AISI 4340 Steel—K. P. DATTA AND W. E. WOOD	150
Fractographic Characterization of the Effect of Inclusions on Fatigue Crack Propagation—A. D. WILSON	166
Effect of Compressive Loading on Fatigue Crack Growth Rate and Striation Spacing in Type 2219-T851 Aluminum Alloy—L. ALBERTIN AND S. J. HUDAK, JR.	187
Correlation Between Fatigue Crack Growth Rate and Fatigue Striation Spacing in AISI 9310 (AMS 6265) Steel—J. J. Au AND J. S. Ke 202

Nonmetallics and Composites

Fractographic Analysis of Delayed Failure in Ceramics—J. J. Mecholsky AND S. W. Freiman 246

Multiple-Mist Regions on Glass Fracture Surfaces—A. I. A. Abdel-Latif, R. C. Bradt, AND R. E. Tressler 259

Localized Deformation and Fracture of Magnesium Oxide—W. F. Adler AND T. W. James 271

Fatigue Fracture Surface Micromorphology in Poly(vinyl chloride)—C. M. Rimnac, R. W. Hertzberg, AND J. A. Manson 291

Fracture of Tungsten Wire in Metal Matrix Composites—C. Kim, W. L. Phillips, AND R. J. Weimer 314

Techniques

Quantitative Fractography of a Fatigued Ti-28V Alloy—E. E. Underwood AND S. B. Chakrabortty 337

Fourier Transform Techniques—Fracture and Fatigue—D. E. Passoja AND J. A. Psioda 355

Application of Load Pulsing to the Fractographic Study of Stress-Corrosion Cracking of Austenitic Stainless Steels—M. T. Hahn AND E. N. Pugh 413

A Test Method to Determine the Degree of Embrittlement in Electrodeposited Copper—Louis Zakraysek 428

Summary 443

Index 447