DISCUSSION

W. G. Wolfer—Are the mobile vacancies listed in your tables monovacancies?

D. G. Doran, R. L. Simons, and W. N. McElroy (authors' closure)—No. The annealing model is based on Johnson's simulation of γ-iron, in which the mobile species are di-, tri-, tetra-, and monovacancies, in decreasing order of mobility (see Ref 12 of paper).

W. G. Johnston—A principle aim of ion, proton, and electron simulation experiments is to predict end-of-life swelling in commercial reactors (or a demonstration plant). What damage level in dpa corresponds to presently contemplated target fluences and spectra for such reactors?

D. G. Doran, R. L. Simons, and W. N. McElroy—Goal fluences differ for different reactor components. The highest goal fluence specified at present for a demonstration plant is $3 \times 10^{23} (E > 0)$ for the fuel cladding. The corresponding exposure for a 300 series stainless steel is ~90 dpa.

1 Advanced Reactor Division, Westinghouse Electric Corporation, Madison, Pa. 15663.
2 Research Laboratory, General Electric Company, Schenectady, N. Y. 12301.