Index

A

Acoustic emission test, 6, 7, 21
Akiyama, T., 294
Aluminum alloys
 2017, 12
 5083, 12
 7075-T7351, 357
Anderson, T. L., 210
Andrews, W. R., 308
ASTM
 Test Method for J_{ik}, a Measure of Fracture Toughness (E 813), 3, 83, 192, 193, 210, 216
 Blunting line evaluation, 7, 98, 178, 186, 411
 Difficulties with, 96–99, 117, 148, 166, 181
 J evaluation, 61, 104–105
 J_{ik} definition, 4, 50
 Sensitivity analysis, 84
 Test Method for Plane-Strain Fracture Toughness of Metallic Materials (E 399), 30, 36, 263, 339, 418
 Auerkari, P., 363

B

Bakker, A., 394
Bearings, roller, 120
Bending, reverse, 35–40, 43–45
Bernard, J., 131
Blauel, J. G., 104

British Standards

 Methods for Crack Opening Displacement Testing (BS 5762-1979), 30, 188, 210, 230
 Correlation with other methods, 248–255
 Methods of Test for Plane Strain Fracture Toughness (K_{ic}) of Metallic Materials (BS 5447-1977), 30

C

Charpy V-notch testing, 254
Cleavage fracture, 196
Clevis design, 120–124
Compact tension specimens, 375
Compliance in test rig, 377–378 (see also Clevis)
Compression, local, 28–35, 43–45
Copper plating technique, 323
Crack initiation and propagation, 183, 196, 216–229
Calculation of, 138–141
Factors affecting, 170–181
Measuring methods, 89–95, 412–414
 AC potential drop, 363, 369
 Key curve, displacement based, 308
 Multispecimen heat tinting, 183
 Partial unloading, 338
 Mechanism, 49–52, 112
 Resistance to growth, 173–177
 Under constant load, 322
Crack-tip opening displacement, 30, 188, 210, 230
Correlation with other methods, 248–255, 278

D
Dawes, M. G., 23, 210, 258
devVries, M. I., 183
Displacement-based key curve method, 308
Domian, H. A., 150
Double clip gage technique, 263, 294
Druce, S. G., 166
Ductile-brittle transition range, 196, 210, 247, 258, 261
Ductile crack growth, 183

E
Electrical potential test (see Potential drop test methods)
Emanuelson, R. H., 68

F
Fatigue cracking, 24–27
Fatigue precracking, 23, 24
Faucher, B., 278
Ferritic materials, 399 (see also Steel alloys)
Fujita, T., 294, 322
Futato, R. J., 68, 84, 150

G
Geometry effects, 166, 210, 323
Gibson, G. P., 166

H
Heerens, J., 338, 411
Hellmann, D., 338
Hiser, A. L., 263
Hole geometries, 120, 123
Hollstein, T., 104
Ingham, T., 47

J
J testing, 84, 104, 131, 183, 278 (see also ASTM Test Method for J_c, a Measure of Fracture Toughness [E 813])
Correlation with other methods, 248–255
Effects of specimen geometry, 210
Effects of strain aging, 150
Under constant load, 322
J_c test methods, 3, 83, 96–103 (see also ASTM Test Method for J_c, a Measure of Fracture Toughness [E 813])
J-R curve determination procedures, 186, 263, 417
JSME Standards
Standard Method of Test for Elastic-Plastic Fracture Toughness J_c (S001-1981), 3, 294

K
Kagawa, H., 294, 322
Key curve method, displacement based, 308
Knaack, J., 338
Kobayashi, H., 3

L
Loading displacement rate effects, 155–165
Loss, F. J., 263
Lowe, A. L., 84

M
Mayville, R. A., 117
McHenry, H. I., 210
Microstructural effects, 200–207
Miglin, M. T., 150
Müller-Roos, J., 338

N
Nakamura, H., 3
Nakazawa, H., 3
Neale, B. K., 375
Notches, chevron, 27

P
Partial unloading compliance test method, 106, 107, 117
Potential drop test methods, 6, 7, 21
AC, 363, 369
Comparison between AC and DC, 397
DC, 108–115, 338, 394, 397
Precracked Charpy specimens, 375
Precracking fatigue, 133, 134
Priest, R. H., 375

R
R-curve test, 3, 6, 12, 19
R ratio, 41–45
Reactor pressure-vessel steels, 47, 199, 230, 375
Rolfe, S. T., 230
Roller bearings, 120
Rosenfield, A. R., 196

S
Saarelma, H., 363
Saario, T., 363
Schaap, B., 183
Schwalbe, K.-H., 338, 411
Sensitivity analysis, 84
Shetty, D. K., 196
Silicone-rubber crack infiltration technique, 167
Single-specimen compliance procedure, 263
Size effects, 20, 21, 166, 207, 230 (see also Specimen geometry effects)
Specimen geometry effects, 166, 210, 323
Specimen size effects, 20, 21, 166, 207, 230 (see also Specimen geometry effects)
Stable crack growth, 166, 183
Steel alloys
316H Stainless (UNS S31400), irradiated, 131
304 (UNS S30400), 18, 19, 183, 318–320
4340, 17, 18
A106, 160–162, 165
A131, 230
A508, 196
Crack growth testing by displacement-based key curve method, 318–320
Crack-tip opening displacement testing, 230
J-R curves, 167, 178, 179
Strain aging, 151, 152
Upper shelf toughness, 47
A515 Grade 70, 150
A516, 160–162, 230
A517, 230
A533, 12–21, 47, 230, 318–320
A542 (UNS K21590), 167, 179–180
Austenitic stainless, 183
BS4360 43A, 167
Carbon-manganese, 173
EH36, 210
G43370, 17–18
HSST-02, 50, 51
HT60, 15, 16
HT80, 19, 20
NiCrMoV, 33
Nuclear reactor, 47, 199, 230, 375
Pressure vessel, 47, 150, 199, 230, 375
Ship, 230
U12539, 108–110, 113–115
Stepwise loading technique, 326–331
Strain aging, 150
Stress relief, 27–30
Stresses, residual, 25–41
Stretched zone width test, 4, 15–18
Sulfur content, 56

T
Tearing modulus, 292
Temperature effects
At upper shelf, 49
In AC potential drop method, 369–372
On fracture toughness of weld metals, 74–82
On slope of J-R curve, 150
Titanium alloy
Ti-6Al-4V, 9, 11, 12
Torronen, K., 363
Towers, O. L., 23
Transducer calibration, 86–90
Tyson, W. R., 278

U
Ultrasonic echo test technique, 6, 7, 21, 323
Unloading technique for crack measurement, 278, 363, 375
Upper shelf toughness, 47
Urabe, N., 294, 322

V
Van Der Sluys, W. A., 68, 84, 150
Verzeletti, G., 131
Voss, B., 104, 117

W
Wallin, K., 363
Weld materials, 68, 131, 151, 162–165
Welding fluxes, 81
Welding Institute, 23
Welding procedures, 68
Welded joints, 23
Weldments, 23, 26, 27
Wellman, G. W., 230

Y
Yoshitake, A., 322