ANALYSIS OF

The TEST METHODS

for

HIGH MODULUS FIBERS

and

COMPOSITES

STP 521

AMERICAN SOCIETY FOR TESTING AND MATERIALS
ANALYSIS OF THE TEST METHODS FOR HIGH MODULUS FIBERS AND COMPOSITES

A symposium
presented at a meeting of
Committee D-30 on
High Modulus Fibers and Their Composites
AMERICAN SOCIETY FOR TESTING AND MATERIALS
San Antonio, Tex., 12-13 April 1972

ASTM SPECIAL TECHNICAL PUBLICATION 521
J. M. Whitney, symposium chairman

List Price $30.75
04-521000-33

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The papers in the symposium on Analysis of the Test Methods for High Modulus Fibers and Composites were presented at a meeting held in San Antonio, Tex., 12-13 April 1972. The symposium was sponsored by The American Society for Testing and Materials through its Committee D-30 on High Modulus Fibers and Their Composites. J. M. Whitney, Air Force Materials Laboratory, Wright-Patterson Air Force Base, presided as symposium chairman. Carl Zweben, Materials Science Corporation, and R. J. Diefendorf, Rensselaer Polytechnic Institute, presided as symposium vice-chairmen for Composites and Fibers, respectively.
Related

ASTM Publications

Interfaces in Composites, STP 452 (1969),
$16.50 (04-452000-33)

Composite Materials: Testing and Design,
STP 460 (1970), $31.00 (04-460000-33)

Composite Materials: Testing and Design
(Second Conference), STP 497 (1972),
$36.50 (04-497000-33)

Applications of Composite Materials, STP 524
(1973), $16.75 (04-524000-33)
Contents

Introduction

Reliability and Fracture

Characterization of Composites for the Purpose of Reliability Evaluation	5
J. C. Halpin, K. L. Jerina, and T. A. Johnson	5
Models for Laminate Failure	9
Experimental Reliability	17
Engineering Consequences of Statistics	31
Reliability and Safety of Composite Structures	39
Reliability Through Proof Testing	48
Summary	53

Philosophies of Composite Fracture Mechanics	68
Comparison with Experimental Data	84
Summary and Conclusions	95

Interaction of Cracks with Fibers	100
Experimental Results on Fiber-Reinforced Composites	118
Conclusions	131

Stress Analysis Near the Crack Tip	134
Analytical Failure Criteria	136
Examples of Fracture Strength Predictions	138
Conclusions	141

Deformation and Failure of Boron-Epoxy Plate with Circular Hole — I. M. Daniel, R. E. Rowlands, and J. B. Whiteside	143
Anisotropic Stress Analysis	144
Finite-Element Analysis	146
Experimental Procedure	147
Stress and Strain Distributions	149
Failure	159
Summary and Conclusions	162
Composite Materials Characterization

Free-Edge Effects in the Characterization of Composite Materials — J. M. Whitney
Axial Tension 167
Rail Shear Test 168
Sandwich Beam Test 174
Conclusions 176

Effects of Specimen Geometry on the Strength of Composite Materials — B. E. Kaminski
Data Base 181
Test Method Comparisons 182
Effect of Temperature 185
Laminate Comparison 189
Conclusions 191

Compressive Strength and Failure Modes of Unidirectional Composites — L. B. Gresczuk
Theories for Microbuckling of Unidirectional Composites 194
Experimental Studies on Compression Failure of Unidirectional Composite Models 201
Properties of Constituents and Preparation of Test Specimens 202
Failure Modes for Ductile, Isotropic Fiber-Reinforces Composites 204
Failure Modes for Brittle, Anisotropic, Fiber-Reinforced Composites 208
Compressive Strength of Unidirectional Composites 210
Conclusions 215

Experimental Observations 219
Influence of Interlaminar Shear Stress 220
Conclusions 226

Tensorial Nature of Composite Material Parameters 230
Summary and Conclusions 250

Tubular Specimens in Composite Characterization

Pure Bending of Helical Wound Composite Cylinders — N. J. Pagano
Analysis 255
Results 256

Prediction and Control of Macroscopic Fabrication Stresses in Hoop Wound, Fiberglass Rings — R. C. Reuter, Jr.
Analysis 266
Numerical Results 272
Experiments and Experimental Results 274
Conclusions 276
Experimental Apparatus and Procedure 278
Results and Discussion 282
Summary of Results 291

Post-Yielding Behavior of Torsionally Loaded Composite Tubes – R. B. Lantz and R. L. Foye 293
Test Data Source 294
Analytical Methods 295
Correlation Curves 298
User Requirements 299
Conclusions and Summary 299

Nondestructive Characterization of Composites

Ultrasonic Spectroscopy Theory 314
Ultrasonic Spectroscopy Testing Procedure and Results 317
Concluding Remarks 322

Determination of the Mechanical Properties of Fiber Composites by Ultrasonic Techniques – G. D. Dean and F. J. Lockett 326
Determination of the Elastic Stiffnesses of a Transversely Isotropic Material 328
Material Characterization 340
Viscoelastic Material Properties 343

Fiber Characterization

Influence of Fiber Property Variation on Composite Failure Mechanisms – J. V. Mullin 349
Energy Release at Fiber Fracture 350
Energy Absorption Mechanisms 352
Failure Mechanisms for Single Fibers and Tows 354
Conclusions 363

Graphite Fiber Tensile Property Evaluation – P. E. McMahon 367
Single Filament Testing 368
Dry Bundle Testing 373
Impregnated Strand Modulus Measurement 385
Comparison of Tensile Evaluation Methods 387
Conclusions 387

High-Strength Filaments for Cables and Lines – E. Scala 390
Statistics of Bundle Theory and Fiber Failure 391
Filament Mechanical Properties 394
Glass Filaments 394
Carbon Fiber Properties 396
Organic Type Fibers-PRD-49 398
Application for High-Modulus Guys 402
Cable Design and Fabrication 405