Index

A

Accelerated cooling in controlled rolling, effect on microstructure and properties in Arctic steels, 112-119

Acicular ferrite, 145-146

Aging

In hydrogen environment, 382-392

Precipitation in Custom 450, 370-375

Alloy additions

Effect on hardenability in carburizing steels, 208-210
Effect on strength in ferritic SS, 272-274
Effect on toughness in ferritic SS, 274-278
Effect on strength in austenitic SS, 279-282
Effect on Ar₃ in line pipe steels, 110-112
In high temperature alloys, 529-530
In microalloyed steels, effects on SSCC, 58

Alloy design in steels, 13-17

Alloy type

A286, 529, 533, 534, 537, 542
A535 B, 186-206
AF 115, 576
ASA, 52
Astroloy, 541, 551, 560

Corten B, 58
CoTaC, 505
Cr-Mo steels, 169-185
Cr-Mo-V steels, 169-185
Custom 450, 367-380
EX-32, 207-229
EX-55, 207-229
HK-40, 502-504
HSLA steels, 35-51, 53-72, 73-104, 105-122, 145-167
HS-188, 510
Hastelloy X, 500-511, 529
IN-100, 541-542, 558-560
IN-102, 500
IN-626, 500
IN-738, 505-507
IN-706, 508-510, 537
Inco Alloy D, 510-512
Incoloy 800, 500-501, 616-631
Inconel 751, 593-594, 596
MC 20, 406-429
Mo-Nb steels, 126-143
N-155, 594
Ni-Cr-Mo-V steels, 169-185
NiTaC-13, 505
Nimonic 80A, 500, 526-529, 592
Nimonic 90, 529
Nimonic 100, 529
Nimonic 115, 500, 501
Nimonic PE-16, 497
Pyromet 31, 544, 597
Pyromet CTX-1, 528, 534, 537-539
Pyromet CTX-2, 537
<table>
<thead>
<tr>
<th>Material</th>
<th>Pages or Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rene 95, 541, 551, 560, 565–577</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>SAE 4800, 207–229</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>SAE 9300, 207–229</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Sandvik 12R72, 393–405</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Sandvik 12RN72, 393–405</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Silchrome 10, 597, 598</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Stellite 6, 591, 592, 594–599</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Super Waspaloy, 601–613</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Uranus 50, 430–460</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>V57, 534</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Vasco-MA, 17</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Waspaloy, 530–532, 534, 535, 602–613</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Wnr 4439, 299–304</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>0.3C-5Mo steel, 15</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>5 Cr-Mo-V steel, 13</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>15-5 PH, 382–392</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>21-4N, 591, 592</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>21-12N, 592–593</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>29Cr-4Mo SS, 335–365</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>29Cr-4Mo-2Ni SS, 335</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>316 SS, 290–291, 495</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>316L SS, 336</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>321 SS, 500</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>718 alloy, 530–532, 534, 535, 537, 541, 542, 551</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>901 alloy, 532, 534, 535, 541, 542</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Alpha prime</td>
<td></td>
</tr>
<tr>
<td>Effect on 475°C embrittlement, 336–337</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Effect in duplex SS, 441–443</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Precipitation in ferritic SS, 271–272</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>Effect on carbide precipitation, 21–28</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Effect on strength and toughness in 4340, 29–30</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Accicular ferrite structures, 248</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Aluminum–silicon interaction in steels, 230–231</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Anisotropy, effect on mechanical properties in duplex SS, 443–446</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Argon</td>
<td></td>
</tr>
<tr>
<td>Entrapment in PM superalloys, 574–576</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Entrapment, effect of powder size on, 638</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Oxygen decarburization, 522</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Oxygen degassing, 636</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Austenite</td>
<td></td>
</tr>
<tr>
<td>Effect on corrosion resistance, 380</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Precipitation in ferrite, 437–441</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Structural control in rolling, 38–41</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Austenitic SS, 279–290</td>
<td>644 MICON 78</td>
</tr>
<tr>
<td>Average strain ratio in ferritic SS, 278</td>
<td>644 MICON 78</td>
</tr>
</tbody>
</table>

B

Blistering, 55–56
Boron
Effect on temper embrittlement, 245
Role in austenitic SS, 395
British Petroleum HIC testing, 70–71

C

Carbide
Distribution, effect on yield strength in martensite, 265–266
In high temperature alloys, 532, 533
Morphology, effect on temper embrittlement, 183–184
Volume fraction, primary, 17
Carbon
Content, effect in line pipe steels, 251
Content in Waspaloy and Super Waspaloy, 639, 640
Content, relation to strength in martensitic SS, 265–266
Effect in austenitic SS, 393
Effect on proof stress, 267–268
Role in ferritic SS, 271
Carburized specimens, mechanical testing of, 211–213, 257
Chemistry-processing-properties interrelationship in line pipe steels, 73–74

Chi
Embrittlement, 375–376
Precipitation in duplex SS, 436
Chordal fatigue, 592, 593
Chromium
Carbide continuity, effect on IGSCC, 331
Carbide $M_{23}C_6$ detectability, 467
Carbide precipitation M_2C_3 and $M_{29}C_6$ in duplex SS, 433, 434
$M_{23}C_6$ in Waspaloy, 608–613
Carbide quantification, 327–329
Depletion, effects on IGSCC, 331–333
Depletion in austenitic SS, 465, 466
Effect on embrittlement in ferritic SS, 335
Effect on 475°C embrittlement, 337
Effect on SCC resistance, 421, 422
In microalloyed steels, effect on HIC, 66–67
Replenishment in austenitic SS, 466
Role in austenitic SS, 279
Role in ferritic SS, 271
Cladding in nuclear reactors, 633, 634

Coal
Gasification, 482
Gasification, materials problems, 482–486
Combustion, 481
Conversion, 481
Conversion, pressurized fluid bed, 488
Conversion, pressurized fluid bed, materials problems in, 488–492
Liquefaction, 486, 487
Liquefaction, material problems in, 487
Pretreatment, 484
Utilization, 481, 482
Contamination in PM superalloys, 558–560

Corrosion
Localized, relation to microstructure in duplex SS, 457–459
Mechanism in exhaust valves, 584–590
Pitting, in duplex SS, 450–547

Corrosive media
ASTM A262/B, 354–355, 410
ASTM A262/A B and E, 308–309
ASTM A262E, 431, 455–457
Carbonate, 585, 586
Carburizing, 402, 403
Ferric chloride, 336, 379
Ferric sulfate, 422, 423
Formic acid, 423, 424
Halogen, 585, 586
Hydrochloric acid, anodic, 431, 450–455
Hydrogen sulfide, 377–379
Lead oxide, 586
Magnesium chloride, 377, 378, 420–422, 470
Methane-steam, 617–619
Nitric acid, 336
Sodium chloride, 379
Steam, 402
Sulfide, 53–56, 544, 586, 594, 595, 597
Sulfuric acid, 379
Vanadium pentoxide, 586
Water, high temperature, 309
Crystallographic texture in austenitic SS, 284–285

Embrittlement
475°F, in duplex SS, 441–443, 447–450
475°F, in ferritic SS, 271–272
475°F, in 29Cr-4Mo SS, 336–338
High temperature, 335–336
Exhaust valve design, 582–584
Explosive forming, 463, 464

F

Fatigue
Crack growth rate in carburizing steel, 215–217
High temperature, 591–593
Ferrite
Composition in duplex SS, 412–415
Deformation, 126–127
Grain size control, 36–37
Morphology, effect of heat treatment on, 411–420
Ferritic stainless steels, physical metallurgy of, 271–279
Forest dislocation strengthening, 248
Forging of high temperature alloys, 533–536, 555, 556
Formability of austenitic SS, 284–288
Formability of ferritic SS, 278–279
Fracture toughness, effect of alloying additions on, 219–221

E

Electric arc furnace melting, 519, 520
Electrochemical potentiokinematic reactivation, 310
Electron beam
Melting, 522, 523
Remelting, 524, 525
Electroslag melting, 524

Gamma prime
Composition, 548
Morphology, 548–549
In Waspaloy, 608–611
Solvus, 655
Volume fraction, effect on superplasticity, 542
In Inco 800, 626–629

D

Deformed ferrite, 247–248
Deformed ferrite percentage
Effect on tensile properties in Mo-Nb steel, 134–141
Effect on impact properties, 141
Delta ferrite in martensitic SS, 264
Dislocation
Density, effect on yield stress, 266
Density in martensite, 265–266
Substructure, effect on tensile properties in Mo-Nb steel, 137–140
Substructure in steel, 248
Ductile to brittle transition temperature in a ferritic SS, 342–354
Ductility of austenitic SS, 288–289
Duplex stainless steel, 290–292, 406–429, 430–460
Gas turbines, 492–494
Gatorizing, 541, 542
Grain boundary migration, 301–302
Grain refinement, effects on properties in HSLA steels, 35
 In super Waspaloy, 608
 In ferritic SS, 462, 463
Grain size
 Austenitic, effect on transformation structure, 110–111
 Effect on tensile properties in Mo-Nb steel, 134–136
 Effect on temper embrittlement, 173
 Effect on yield strength in tempered martensite, 267
 Effect on impact transition temperature, 269–270, 274–276
 Effect on strength in ferritic SS, 272–274
 Effect on strength in austenitic SS, 280–282
 Effects in line pipe steels, 80–82
 Limiting recrystallized austenitic, 232–234
Guttering, 586, 597

H
Hardener content in high temperature alloys, 565, 566
High temperature gas reactors, 498, 499
 Materials problems, 499–501
Homogenization of high temperature alloys, 549–553
Hot isostatic pressing, 542–544, 556–558
Hydrogen
 Effect on second phase nucleation, 387–392
 Induced cracking in microalloyed steels, 53–54, 64–68
 Induced cracking in HAZ of line pipe steel, 164, 250
 Interaction with lattice defects, 382, 383

I
IGSCC, heat to heat variation, 310–313
Impact properties, effect of rolling temperature on, 160–163
Impact transition temperature, microstructural factors, 268–271
Impurity elements, effect on temper embrittlement, 244–245
Inclusion shape, effect on HIC, 56, 60, 64–66

Ing
Ingot
 Characteristics of high temperature alloys, 549–553
 Conversion of high temperature alloys, 553–555

L
LMFBR, 494–496
 Materials problems, 496–498
 Low temperature sensitization, 333
 Luders extension, effect of rolling temperature on, 151

M
Md in austenitic SS, 463
Manganese
 Effect on ferrite formation, 49–51
 Effect on grain size in Mo, Nb steel, 149
Martensitic transformation in austenitic SS, 280, 282–283
Mechanical property prediction, line pipe steels, 92–95
Microchemical analysis, 329
Micrograin processing, 541
Microstructural changes in controlled rolling of X-70, 110-112
Minigrain processing, 541
Molybdenum
Effect on corrosion resistance, 469
Effect on embrittlement in ferritic SS, 335
Effect on temper embrittlement, 243
Role in austenitic SS, 394

N
Nickel, effect on SCC resistance, 421-422
Niobium carbonitride precipitation, effect on tensile properties in Mo-Nb steel, 136
Nitrogen
Effect on proof stress in martensitic SS, 267-268
Effect on strength in austenitic SS, 281-282
Nonmetallic inclusions, effect on SCC, 56

O
Oxidation, intergranular, 500, 501, 619

P
Phosphorus-oborn interaction, effect on temper embrittlement, 245
Powder metallurgy
Defects, 574-576
Of high temperature alloys, 541-544, 556-563, 564-577
Precipitate area fraction and sized distribution, 43-44
Precipitation
Effects in microalloyed steels, 36
Reactions in high temperature alloys, 530-533
Reactions in Waspaloy, 606
Reactions in Super Waspaloy, 608-613
Recrystallization interaction, 45-51
Strain induced, 45-46
Processing control of high temperature alloys, 537-539
Property variation across pipe wall, 249, 253-254

Q
Quantitative metallography of transformation products in steel, 195-204

R
R-phase precipitation in duplex stainless steel, 436
Radiation damage, 496, 497, 633
Rare earth additions, 244-245
Recrystallization
Dynamic, 296-297
Metadynamic, 297-299
Of 304 SS, 300-303
Of 4439, 303-304
Retardation of in HSLA steels, 41-46
Regression analysis correlation, chemistry, processing and microstructure in line pipe steels, 85-88
Regression analysis correlation, chemistry, processing and properties in line pipe steels, 89-99
Rolling parameters, effects on mechanical properties, 107–112
Roping in ferritic SS, 279

S
Secondary hardening alloys, 21–28
Sensitization, effect of pre-existing strain on, 317–318
Sensitization in austenitic SS, 465–468
Sigma
 Effect on corrosion resistance, 326
 Formation in duplex SS, 434–436
 In Inco 800, 626
Silicon
 Effects on carbide precipitation, 21–28
 Effect on SCC, 470
 Effects on strength and toughness of 4340, 29–30
 Role in arctic line pipe, 201
Single crystal superalloy blades, 634, 635
Slab reheating temperature, effect on toughness, 107–108
Solid state reactions in steel, 13–17
Splitting, 108–109, 123, 166
Steam/gas turbine combined cycles, 492
Materials problems, 492–494
Step cooling, limitations in temper embrittlement evaluations, 180–182
Strain age cracking, 599
Strap test, limitation of, 99–102, 238–239, 253–254
Strength-toughness optimization, microstructural factors, 24–30
Stretch formability in austenitic stainless steel, 285–288
Strengthening mechanisms
 In accelerated cooling, 115–119
 In austenitic SS, 280–284
 In ferritic SS, 272–274
 In martensitic SS, 265–268
Sulfide stress corrosion cracking, 53–62, 64, 69, 250–251
Sulfide stress corrosion cracking test method, 69–70
Superalloys
 Cast, 502–504
 Eutectic, 505
 Forgings, 508–510
 Investment castings, 505–508
 Sheet, 510
 Single crystal, 634, 635
 Types, 515–517
 Utilization in energy systems, 501, 502
 Oxididispersion strengthened, 510–512
Super Waspaloy, processing, 602–604

T
Temper embrittlement
 Effect of impurity elements on, 244–245
 Effect of molybdenum on, 243
 In Cr-Mo steels, 171–174
 In Cr-Mo-V steels, 174–177
 In Ni-Cr-Mo-V Steels, 177–179
Tempering temperature, effect on impact strength of 4340, 29–30
Thermomechanical processing, effect on austenite transformation, 46–51
 Of high temperature alloys, 541
Titanium
 Effects in HSLA steels, 46
 Role in austenitic SS, 395
 Role in microalloy steels, 241–242
Toughness
 Of ferritic SS, 274–278
 Of martensitic SS, 268–271
Transformation products, effect on
 SCC, 56–60
Tungsten, effect of hardness and
 toughness, 17–21

U
 U-bend testing, 71–72

V
 Vacuum arc remelting, 523, 524
 Vacuum
 Degassing, 521
 Induction melting, 520, 521

Oxygen decarburization, 521, 522

Vanadium
 Effect on hardness and toughness, 19–20
 Effects in HSLA steels, 46
 Void formation induced swelling, 496, 497

W
 Waspaloy forgings, processing, 602–604
 Weld sensitization in 304 SS, 314–316
 Work hardening rate, ferritic SS, 278