INDEX

A

Abraders, 305–306, 309
Abradometer, for traffic paint studies, 472
Abraser, 308-309
for mar test, 298
Abrasiometer, 304–305
Abrasion, 302
block for, 311
impinging, for mar resistance test, 297–298
resistance to, 301–312
and hardness, 301
loose or falling abrasive tests of, 302-304
and mar resistance, 301
and modulus of elasticity and tensile strength, 301
and rain or water erosion, 310
rectilinear motion for tests of, 307–308
rotating disks for tests of, 307–308
rotating wheels for tests of, 308–309
and service performance, 301–302
of tile-like coatings, 460
of traffic paint, 312, 472–473
wet abrasion methods for tests of, 310–311
testing machine, 307–308
Abrasive matter, in polishes, 440
Absorption
of architectural paint, 425–426
of oil (see Oils, absorption of)
Acetone tolerance, of oils, 65
Acid(s)
absorption by solvents, 143–144
in alkyl resins, 95–97
dye laking, for pigments, 156
resistance to, in glass beads, 469
Acid value
of alkyl resins, 102
of oils, 55–56
of printing ink, 491
of resins, 84
of tall oil, 87
of varnish, 419
of waxes, 438
Acidity
of pigments, 500
of plasticizers, 124
of solvents, 146–147
Acrylics
resin, 114–115
solubility parameters of, 132
Acrilonitrile resins, 108–109
Actinic values, in artificial weathering, 410
Activity test, for cleanliness of steel panels, 379–380
Adherometer, 317–318
Adherometer-Integrometer, 318
Adhesion, 314–331
adhesive joint tests of, 323–326
or architectural paint, 426–427
classification of test methods for, 315
and edge adhesion, test, 318–319
hydrophil balance test of, 330–331
impact and bending tests of, 330
interfacial forces of, 314–315
knife removal test of, 315–319
lap shear tests of, 325–326
metal–glide adhesion test of polishes, 441–442
peel tests of, 326–329
scraping and scratching tests of, 319–323
of sealants, 449–452
of seamless floors, 461
tension tests of, 323–324, 325
torque shear tests of, 326
Adhesive tape tests, of adhesion, 327
Adhesiveness
shearing, of putty, 447
tensile, of putty, 449
Adulteration
of whole paint, 495–514
and edge adhesion, test, 318–319
Acidity, 315
and chemical analysis of pigments, 500–514
Dirt, 379-380
Adulteration, 379-380
INDEX

A

Abraders, 305–306, 309
Abradometer, for traffic paint studies, 472
Abraser, 308-309
for mar test, 298
Abrasiometer, 304–305
Abrasion, 302
block for, 311
impinging, for mar resistance test, 297–298
resistance to, 301–312
and hardness, 301
loose or falling abrasive tests of, 302-304
and mar resistance, 301
and modulus of elasticity and tensile strength, 301
and rain or water erosion, 310
rectilinear motion for tests of, 307–308
rotating disks for tests of, 307–308
rotating wheels for tests of, 308–309
and service performance, 301–302
of tile-like coatings, 460
of traffic paint, 312, 472–473
wet abrasion methods for tests of, 310–311
testing machine, 307–308
Abrasive matter, in polishes, 440
Absorption
of architectural paint, 425–426
of oil (see Oils, absorption of)
Acetone tolerance, of oils, 65
Acid(s)
absorption by solvents, 143–144
in alkyl resins, 95–97
dye laking, for pigments, 156
resistance to, in glass beads, 469
Acid value
of alkyl resins, 102
of oils, 55–56
of printing ink, 491
of resins, 84
of tall oil, 87
of varnish, 419
of waxes, 438
Acidity
of pigments, 500
of plasticizers, 124
of solvents, 146–147
Acrylics
resin, 114–115
solubility parameters of, 132
Acrilonitrile resins, 108–109
Actinic values, in artificial weathering, 410
Activity test, for cleanliness of steel panels, 379–380
Adherometer, 317–318
Adherometer-Integrometer, 318
Adhesion, 314–331
adhesive joint tests of, 323–326
or architectural paint, 426–427
classification of test methods for, 315
and edge adhesion, test, 318–319
hydrophil balance test of, 330–331
impact and bending tests of, 330
interfacial forces of, 314–315
knife removal test of, 315–319
lap shear tests of, 325–326
metal–glide adhesion test of polishes, 441–442
peel tests of, 326–329
scraping and scratching tests of, 319–323
of sealants, 449–452
of seamless floors, 461
tension tests of, 323–324, 325
torque shear tests of, 326
Adhesive tape tests, of adhesion, 327
Adhesiveness
shearing, of putty, 447
tensile, of putty, 449
Adulteration
of whole paint, 495–514
and edge adhesion, test, 318–319
Acidity, 315
and chemical analysis of pigments, 500–514
Dirt, 379-380
Adulteration, 379-380

Chromate pigments, 154-155
Chloro-isoindolinone pigment, 159
Chloroform-insoluble matter, in oils, 64
Chipping, of traffic paint, 473, 476
Chromate treatment, of galvanized steel, 382
Chlorine, in zinc powder, 506
Chlorides
Chloroform-insoluble matter, in oils, 64
Chloro-isoindolinone pigment, 159
Chromate pigments, 154-155
Chromate treatment, of galvanized steel, 382
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corner-wall test, of fire retardance</td>
<td>359</td>
</tr>
<tr>
<td>Corrosion</td>
<td></td>
</tr>
<tr>
<td>copper corrosion of plasticizers</td>
<td>124</td>
</tr>
<tr>
<td>inhibitive value of pigments</td>
<td>164</td>
</tr>
<tr>
<td>thin substrates corrosion test</td>
<td>411</td>
</tr>
<tr>
<td>Cottonseed oil</td>
<td>53</td>
</tr>
<tr>
<td>Coulometry, constant-current</td>
<td>560-561</td>
</tr>
<tr>
<td>Cracks</td>
<td>387–388</td>
</tr>
<tr>
<td>in sealants</td>
<td>453</td>
</tr>
<tr>
<td>Crib test, of fire retardancy</td>
<td>357</td>
</tr>
<tr>
<td>Critical pigment volume</td>
<td>243–247</td>
</tr>
<tr>
<td>and oil absorption</td>
<td>246–247</td>
</tr>
<tr>
<td>Crockmeter, use of</td>
<td>441</td>
</tr>
<tr>
<td>Crosscut adhesion test</td>
<td>319–320</td>
</tr>
<tr>
<td>Crosshatch tape tests, of adhesion</td>
<td>328</td>
</tr>
<tr>
<td>Crowfoot patterns</td>
<td>388</td>
</tr>
<tr>
<td>Cuprous oxide</td>
<td>156</td>
</tr>
<tr>
<td>Cupping tests, of flexibility</td>
<td>335</td>
</tr>
<tr>
<td>Crystallinity of petroleum waxes</td>
<td>438</td>
</tr>
<tr>
<td>Diatomaceous silica pigments, chemical</td>
<td></td>
</tr>
<tr>
<td>analysis of</td>
<td>503</td>
</tr>
<tr>
<td>Diene value of oils</td>
<td>61</td>
</tr>
<tr>
<td>Dilatant flow</td>
<td>181</td>
</tr>
<tr>
<td>Dilution</td>
<td></td>
</tr>
<tr>
<td>limit of solvents</td>
<td>135</td>
</tr>
<tr>
<td>ratio of solvents</td>
<td>135</td>
</tr>
<tr>
<td>stability of architectural paint</td>
<td>423–424</td>
</tr>
<tr>
<td>Dimers, in bodied oil</td>
<td>68</td>
</tr>
<tr>
<td>Dioxazine pigments</td>
<td>159</td>
</tr>
<tr>
<td>Dip coater, for film preparation</td>
<td>256</td>
</tr>
<tr>
<td>Dipotassium salt method, for phthalic</td>
<td></td>
</tr>
<tr>
<td>anhydride in alkyd resins</td>
<td></td>
</tr>
<tr>
<td>Dipping, for preparation of films</td>
<td>256</td>
</tr>
<tr>
<td>Dirt</td>
<td></td>
</tr>
<tr>
<td>in resins</td>
<td>81–84</td>
</tr>
<tr>
<td>retention of paints</td>
<td>389</td>
</tr>
<tr>
<td>in rosin</td>
<td>85</td>
</tr>
<tr>
<td>Dispersion</td>
<td>65</td>
</tr>
<tr>
<td>fineness of</td>
<td></td>
</tr>
<tr>
<td>in architectural paint</td>
<td>423</td>
</tr>
<tr>
<td>gages for</td>
<td>233–235</td>
</tr>
<tr>
<td>in printing ink</td>
<td>492</td>
</tr>
<tr>
<td>and oil absorption of pigments</td>
<td>249–250</td>
</tr>
<tr>
<td>optical of tung oil</td>
<td>62–63</td>
</tr>
<tr>
<td>time for, in oil colors</td>
<td>43</td>
</tr>
<tr>
<td>Displacement method</td>
<td></td>
</tr>
<tr>
<td>for contact angle determination</td>
<td>216–217</td>
</tr>
<tr>
<td>for specific gravity</td>
<td>170</td>
</tr>
<tr>
<td>Distillation</td>
<td></td>
</tr>
<tr>
<td>of bituminous coatings</td>
<td>465</td>
</tr>
<tr>
<td>of plasticizers</td>
<td>124</td>
</tr>
<tr>
<td>temperature for, and evaporation of solvents</td>
<td>138</td>
</tr>
<tr>
<td>Doctor blades, for preparation of films</td>
<td>251–256</td>
</tr>
<tr>
<td>adjustable</td>
<td>252, 253</td>
</tr>
<tr>
<td>automatic</td>
<td>254–255</td>
</tr>
<tr>
<td>magnetic chuck with</td>
<td>255</td>
</tr>
<tr>
<td>motor drive for</td>
<td>255</td>
</tr>
<tr>
<td>Donath test, for rosin identification</td>
<td>77</td>
</tr>
<tr>
<td>Dowel test, for adhesion of tile-like</td>
<td>457</td>
</tr>
<tr>
<td>coatings</td>
<td></td>
</tr>
<tr>
<td>Draft test of varnish films</td>
<td>420</td>
</tr>
<tr>
<td>Drawdown method</td>
<td></td>
</tr>
<tr>
<td>for leveling studies</td>
<td>209</td>
</tr>
<tr>
<td>thin-film, for particle size measurement</td>
<td>232</td>
</tr>
<tr>
<td>Driers</td>
<td></td>
</tr>
<tr>
<td>71–75</td>
<td></td>
</tr>
<tr>
<td>appearance of</td>
<td>71</td>
</tr>
<tr>
<td>calcium in</td>
<td>73, 74</td>
</tr>
<tr>
<td>chromelometric determination of metals in</td>
<td>73–74</td>
</tr>
<tr>
<td>chemical analysis of</td>
<td>72–73</td>
</tr>
<tr>
<td>cobalt in</td>
<td>72–73, 74</td>
</tr>
<tr>
<td>color of</td>
<td>71</td>
</tr>
<tr>
<td>drying power of</td>
<td>71</td>
</tr>
<tr>
<td>iron in</td>
<td>73</td>
</tr>
<tr>
<td>lead in</td>
<td>73, 74</td>
</tr>
<tr>
<td>manganga in</td>
<td>72, 73, 74</td>
</tr>
<tr>
<td>metals in, determination of</td>
<td>72–74</td>
</tr>
<tr>
<td>miscibility of</td>
<td>71</td>
</tr>
<tr>
<td>nonvolatile matter in</td>
<td>72</td>
</tr>
<tr>
<td>physical tests on</td>
<td>71–72</td>
</tr>
<tr>
<td>specific gravity of</td>
<td>72</td>
</tr>
<tr>
<td>stability of</td>
<td>72</td>
</tr>
<tr>
<td>viscosity of</td>
<td>72</td>
</tr>
<tr>
<td>zinc in</td>
<td>73, 74</td>
</tr>
<tr>
<td>Drip point, of resins</td>
<td>81</td>
</tr>
<tr>
<td>Drop test, for cleanliness of steel panels</td>
<td>379</td>
</tr>
<tr>
<td>Drop-weight method, for surface tension</td>
<td>213–216</td>
</tr>
<tr>
<td>measurements</td>
<td></td>
</tr>
<tr>
<td>Dry film thickness</td>
<td>261–265</td>
</tr>
<tr>
<td>Drying oils</td>
<td>53–70</td>
</tr>
<tr>
<td>acetone tolerance of</td>
<td>65</td>
</tr>
<tr>
<td>acid value of</td>
<td>55–56</td>
</tr>
<tr>
<td>in dark oils</td>
<td>56</td>
</tr>
<tr>
<td>adulteration of, tests for, 66–68</td>
<td></td>
</tr>
<tr>
<td>ash in</td>
<td>61</td>
</tr>
<tr>
<td>blown, oxygen content of, 65–66</td>
<td></td>
</tr>
<tr>
<td>boiled linseed oil, detection of, 68</td>
<td></td>
</tr>
<tr>
<td>break in</td>
<td>62</td>
</tr>
<tr>
<td>Brinker color test for</td>
<td>69</td>
</tr>
<tr>
<td>chloroform-insoluble matter in</td>
<td>64</td>
</tr>
<tr>
<td>chromatography of</td>
<td>69–70</td>
</tr>
<tr>
<td>clarity of</td>
<td>63</td>
</tr>
<tr>
<td>color of</td>
<td>63</td>
</tr>
<tr>
<td>diene value of</td>
<td>61</td>
</tr>
<tr>
<td>dimers and trimers in</td>
<td>68</td>
</tr>
<tr>
<td>drying properties</td>
<td>66</td>
</tr>
<tr>
<td>fish oils in, detection of, 68–69</td>
<td></td>
</tr>
<tr>
<td>flash point of</td>
<td>63</td>
</tr>
<tr>
<td>feet in</td>
<td>61–62</td>
</tr>
<tr>
<td>gelation tests of, 66–67</td>
<td></td>
</tr>
<tr>
<td>heat bleach of</td>
<td>65</td>
</tr>
<tr>
<td>heat bodying rate of</td>
<td>64–65</td>
</tr>
<tr>
<td>hexabromide yields of</td>
<td>58–59</td>
</tr>
<tr>
<td>hydroxyl value of</td>
<td>64</td>
</tr>
<tr>
<td>iodine value of</td>
<td>57–58</td>
</tr>
<tr>
<td>loss on heating of, 63–64</td>
<td></td>
</tr>
<tr>
<td>moisture in</td>
<td>64</td>
</tr>
<tr>
<td>oxygen content of, 65–66</td>
<td></td>
</tr>
<tr>
<td>reagents for chemical tests of</td>
<td>55</td>
</tr>
<tr>
<td>refractive index of</td>
<td>62–63</td>
</tr>
<tr>
<td>sampling of</td>
<td>55</td>
</tr>
<tr>
<td>saponification value of</td>
<td>56–57</td>
</tr>
<tr>
<td>specific gravity of</td>
<td>62</td>
</tr>
<tr>
<td>spontaneous combustion of, 364–365</td>
<td></td>
</tr>
<tr>
<td>thiocyanate value of</td>
<td>60–61</td>
</tr>
<tr>
<td>types of</td>
<td>53–55</td>
</tr>
<tr>
<td>unsaponifiable matter in</td>
<td>57</td>
</tr>
<tr>
<td>unsaturation in</td>
<td>57–61</td>
</tr>
<tr>
<td>viscosity of</td>
<td>63</td>
</tr>
<tr>
<td>Drying properties, of printing ink</td>
<td>491</td>
</tr>
<tr>
<td>Drying time</td>
<td>268–279</td>
</tr>
<tr>
<td>of architectural paint</td>
<td>426</td>
</tr>
<tr>
<td>circular recorder for</td>
<td>274–275</td>
</tr>
<tr>
<td>Dry-O-Graph for</td>
<td>274</td>
</tr>
<tr>
<td>dry-to-recoat</td>
<td>273</td>
</tr>
<tr>
<td>dry-through or dry-to-handle</td>
<td>273</td>
</tr>
<tr>
<td>dry-to-touch</td>
<td>272</td>
</tr>
<tr>
<td>dust-free, 269–270</td>
<td></td>
</tr>
<tr>
<td>environment affecting, 268–269</td>
<td></td>
</tr>
<tr>
<td>final, 272–273</td>
<td></td>
</tr>
<tr>
<td>hard-drying</td>
<td>273</td>
</tr>
<tr>
<td>hardness rocker for testing of, 277–278</td>
<td></td>
</tr>
<tr>
<td>meters for</td>
<td>273–274</td>
</tr>
<tr>
<td>paraffin companies machine for, 274</td>
<td></td>
</tr>
<tr>
<td>recorders for, 274–277</td>
<td></td>
</tr>
<tr>
<td>rolling ball testers for</td>
<td>277</td>
</tr>
<tr>
<td>set-to-touch</td>
<td>269</td>
</tr>
<tr>
<td>of shellac varnish</td>
<td>421</td>
</tr>
<tr>
<td>tack-free, 270–272</td>
<td></td>
</tr>
<tr>
<td>and touch controller, 273</td>
<td></td>
</tr>
<tr>
<td>universal recorder for, 276–277</td>
<td></td>
</tr>
<tr>
<td>for varnishes, 419, 421</td>
<td></td>
</tr>
<tr>
<td>Dry-O-Graph, use of</td>
<td>274</td>
</tr>
<tr>
<td>Ductility, of bituminous coatings</td>
<td>463</td>
</tr>
<tr>
<td>Durometer hardness, of sealants</td>
<td>452</td>
</tr>
<tr>
<td>Dust-free drying time</td>
<td>268–270</td>
</tr>
<tr>
<td>Dynamometer, scratch</td>
<td>283</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Eddy-current gage, for film thickness</td>
<td>265</td>
</tr>
<tr>
<td>measurement</td>
<td></td>
</tr>
<tr>
<td>Edge adhesion test, 318–319</td>
<td></td>
</tr>
<tr>
<td>EDTA method</td>
<td></td>
</tr>
<tr>
<td>for cellulose nitrate in alkyd resins</td>
<td>101</td>
</tr>
<tr>
<td>for determination of drier metals, 73–74</td>
<td></td>
</tr>
<tr>
<td>Eflorescence</td>
<td></td>
</tr>
<tr>
<td>of latex paint</td>
<td>427</td>
</tr>
<tr>
<td>hardness to, in masonry paints, 432–433</td>
<td></td>
</tr>
<tr>
<td>Efflux type viscometers</td>
<td>183–186</td>
</tr>
<tr>
<td>Ehrlich's reagent, for urea-formaldehyde</td>
<td></td>
</tr>
<tr>
<td>in nitrogen resins</td>
<td>107</td>
</tr>
<tr>
<td>Elasticity</td>
<td></td>
</tr>
<tr>
<td>and abrasion resistance</td>
<td>301</td>
</tr>
<tr>
<td>of varnish, liquid</td>
<td>417</td>
</tr>
<tr>
<td>Elecometer</td>
<td></td>
</tr>
<tr>
<td>for film thickness measurement, 265</td>
<td></td>
</tr>
<tr>
<td>for surface profile measurement, 266</td>
<td></td>
</tr>
<tr>
<td>for testing adhesion of tile-like coatings</td>
<td>457</td>
</tr>
<tr>
<td>Electrical properties, of plasticizers</td>
<td>124</td>
</tr>
<tr>
<td>Electrocoating paints</td>
<td>486–489</td>
</tr>
<tr>
<td>ash-binder ratio in</td>
<td>487</td>
</tr>
<tr>
<td>and current requirements, 488</td>
<td></td>
</tr>
<tr>
<td>feed materials for, 488</td>
<td></td>
</tr>
<tr>
<td>laboratory apparatus for, 488–489</td>
<td></td>
</tr>
<tr>
<td>nonvolatile content of, 486</td>
<td></td>
</tr>
<tr>
<td>pH of, 486</td>
<td></td>
</tr>
<tr>
<td>pumping stability of, 487–488 test panels for, 486, 487</td>
<td></td>
</tr>
<tr>
<td>throwing power of, 487</td>
<td></td>
</tr>
<tr>
<td>Electroendosmosis, in electrocoating</td>
<td>486</td>
</tr>
<tr>
<td>Electrolisis, in electrocoating, 486</td>
<td></td>
</tr>
<tr>
<td>Electron microscopy (see Microscopy)</td>
<td></td>
</tr>
</tbody>
</table>
Electronic analyzer, for particle size measurement, 229–230
Electrophoresis, in electrocoating, 486
Electro-viscometer, 192
Elongation
 of architectural paint, 427
 and tensile strength, 338–340
Elutriation, for particle size measurement, 227–228
Embrittlement test, photochemical, 410
Extenders, 160–161
Ethylcellulose, 121
Elutriation, for particle size measurement, 227–228
Flotation method, for specific gravity, 170
Flow
 comparator, 209–210
 cups, pressurized, 183
 definition of, 181
 dilatant, 181
gage, 201
 plastic, 181
 point, 249
 pseudoplastic, 181
Flowing
 for preparation of films, 256
 properties of printing ink, 491
Flowmeters, 200–202
Flowplate, 201
Fluidimeter, 201
Fluorescence, 3
 of pigments, 162
 of plasticizers, 127
Fluorescent sunlamps, 409
Fog testing, 343, 344
Foots, in oil, 61–62
Foaming tests, for flexibility, 9
Formula for paint, yield of, 171, 176
Frame, 200
 for free films, 257–259
 for flow, 257–259
 for free films, 257–259
 for indentation hardness, 288
 for mar resistance, 299
 for indentation hardness, 288
 for mar resistance, 299
 box tests for, 358
 cabinet test for, 355–356
 corner-wall test of, 359
 crib test of, 357
 cypress shingle test of, 355
 radiant panel test of, 359
 roof corner test of, 357–358
 Schlyter test of, 359
 Schulz tester for, 355
 sidewall test of, 358–359
 and spontaneous combustion, 364–365
 SS-A-118 test of, 359
 stick and wick test of, 256–259
 and pigments, 9
 for binder identification, 498
 liquid, 530–539
 solid, 539–540
 for mar resistance, 427
 as a binder, 125
 for binder identification, 498
 in test for drying time, 270
 in architectural paint, 427
 in tile-like coatings, 459

G

Gages
 for film thickness measurement, 260–265
 fineness-of-dispersion, 233–235
 flow, 201
 Galvanized steel, tests on, 382
 Gas adsorption, and particle size measurement, 228
 Gas chromatography, 530–542
 for binder identification, 498
 liquid, 530–539
 solid, 539–540
 Gas resistance test, of varnishes, 419–420
 Gasoline, resistance to, 351
 Gel tests of metallic soaps, 75
 Gelation tests of oils, 66–67
 Gelling properties, of metallic soaps, 74–75
 Gibb’s test, of alkyd resins, 100–101
 Glass beads
 in test for drying time, 270
 in traffic paint, 468
 tests on, 468–469
 Glass mill, for pigment paste preparation, 42
 Glass substrates
 black, 33–34
 silvered, 259
 Glazing compounds, 445–454
 flexibility of, 449
 for mar resistance, 452
 hardness of, 426
 see also Sealants
 Gloss, 15–20
 abrasion affecting, 303–304
 absence-of-bloom, 15–16
 aspects of, 15–16
 of chromate pigments, 155

INDEX
INDEX

contrast, 15
distinctness-of-image, 16
measurement of, 18, 19
instruments for measurements of, 17–18
of polishes, 440–441
and sheen, 15
specular, 15
evaluation of, 16
measurement of, 17, 18–19
standards for, 19–20
calibration of, 20
material for, 20
of tile-like coatings, 458
Glycerides, in waxes, 439
Gold pigments, synthetic, 156
Goniophotometers, 17
Graske test, of drier metals, 73–74
Gravelometer, 306–307
Gravitmetric method
for chlorendic acid in alkyd resins, 96–97
for particle size measurement, 228
Gravity
and sedimentation for particle size measurement, 222
specific (see Specific gravity)
for test for sealant adhesion, 451–452
Green pigments
chemical analysis of, 508–509
chrome, 155, 508–509
chromium oxide, 156, 509
copper phthalocyanine, 158
Guignet’s green, 156
Griess test, for celJulosic resins, 103
Grindometer, use of, 234
Grooved rod applicators, for film preparation, 254
Guignet’s green, 156

H

Hallett equation, 37
Hardness, 281–299
and abrasion resistance, 301
of artist colors, 291
indentation, 288–296
and mar resistance, 296–299
pendulum-rocker for measurement of, 284–288
of resins, 78
rocker, for drying time testing, 277–278
scratch, 281–284
of sealants, 452–453
testers of, 281–286
of tile-like coatings, 460
Heat
bleach, of oils, 65
bodily rate, of oils, 64–65
resistance to, 361–365
in printing ink, 491
and spontaneous combustion, 364–365
testers of, 363–364
tests with
for adulteration of oil, 66
for bituminous emulsions, 467
for sealants, 453
transfer of, and humidity tests, 341, 343
Heating of oils, loss on, 63–64
Hempseed oil, 53
Hesiometer, 319
Hexabromide yields of oils, 58–59
Hidrometer, 25
Hiding power, 22–38
basic factors in, 22
of colored pigments, 27
and contrast ratios, 22, 26
definition of, 22
determination of, 22–23, 25, 29, 30
with black glass substrates, 33–34
with cardboard substrates, 32–33
early methods for, 23–25
later methods for, 29–36
Fell equation for, 27
and formulaulation of paints, 37
Kubelka-Munk theory of, 27–29
applications of, 36–37
Judd graph of, 28–29
of organic pigments, 22
and pigment volume concentration, 26, 35, 36–37
and reflectance versus film thickness, 25–26
and refractive indexes of pigments, 22
of tinted paints, 35–36
and tinting strength, 37–38
of titanium pigments, 34–35, 36–37
and visual sensitivity, 26
of white pigments, 22
of zinc sulfide pigments, 35
Holdout
of architectural paint, 425
of tile-like coatings, 458–459
Hot rolling method, for film preparation, 257
Hydrocarbons
in resins, solubility parameters of, 132
in waxes, 438
Hydrogen sulfide, affecting architectural paint, 425
Hydrometer, 167
for particle size measurement, 223
Hydrophil balance test, for adhesion, 330–331
Hydroxethylcellulose, 122
Hydroxyl values
of alkyd resins, 103
of oils, 64
Hydroxypropyl methylcellulose, 122–123
Hygrometers
electric, 349–350
hair, 350
salt color-change, 350
Hygrosopic moisture, in pigments, 500
I
illuminants, standard, 1
illuminator-viewers, and rating of dispersion, 234–235
Illuminometer studies, of traffic paint visibility, 470
Immersion tests, of chemical resistance, 351–353
Impact tests
for adhesion, 330
for flexibility, 333–336
for sealant adhesion, 452
for tile-like coatings, 460
Imprint resistance, 294–295
Impurities (see Adulteration)
Indanthrone blue, 159
Indentation hardness, 288–296
and rheology, 291–294, 295
tests for, 288–291, 294–295
and viscosity of organic coatings, 295
Inducance gage, for film thickness measurement, 265
Inertia tests, for adhesion, 329–330
Influx viscometer, 200
Infrared
radiation, 3–4
spectrophotometry (see Spectrophotometry)
spectroscopy, 547–549
Ink
printing, 490–493
see also Printing ink
stains from, floor sealer resistance to, 421
Inkometer, use of, 493
Inorganic colored pigments, 154–156
Insect-resistant paints, 370
Inspection gate, for film thickness measurement, 263
Instrumental methods of analysis, 515–581
atomic absorption and flame emission spectroscopy, 550–552
chromatography, 522–542
constant-current coulometry, 560–561
differential thermal analysis, 562–563
infrared spectroscopy, 547–549
mass spectrometry, 553–554
microscopy, 555–557
nuclear magnetic resonance spectroscopy, 564–581
polarography, 556–559
ultraviolet spectroscopy, 545–546
Instrumentation
for color measurement, 10–12
for gloss measurements, 17–18
for mass color evaluation, 46–47
for tinting strength evaluation, 47–48
for viscosity studies, 182–202
Intaglio inks, 490
Integrity, concept of, 388–389
Interfacial forces of adhesion, 314–315
International Standards Organization, 584–585
Inter-Society Color Council, and ISCC-NBS
color system, 8
Iodine value
of lac, 88
of oils, 57–58
Iron
blues, 155
chemical analysis of, 507
in copper pigments, 510
in driers, determination of, 73
oxides, 153–156
black, 160
in magnesium silicate pigment, 503
in red lead, 511
synthetic black, 160, 506
synthetic, chemical analysis of, 509–510
pyrophosphate, as extender, 160
in red pigments, 509–510
in rosin, 85
weathering tests on, 376–382
in zinc powder, 506
Isoindolone pigments, 159
Isophthalic acid, in alkyd resins, 95–96
Jet abrader, 305–306
INDEX

Judd graph, of Kubelka-Munk equations, 28–29
Jet test, liquid, for adhesion, 328
K
Kauri-butanol value, and solvency, 133–135
Kauri reduction test, 315–319
Knife tests of adhesion, 315–319
Kubelka-Munk equations
for color matching, 48–49
for hiding power, 27–29, 36–37
Judd graph of, 28–29
for mass color, 46
for tinting strength, 47
Kumelka-Munk equations
Krebs test, for hiding power determination, 23
Knife tests of adhesion, 315–319
Kauri reduction test, 417
Kauri-butanol value, and solvency, 133–135
Lead
ash in, 90
color of, 90
copal in, 88
identification of, 77
insoluble matter in, 88
iodine value of, 88
matter soluble in water, 90
moisture in, 89–90
orpiment in, 90
purity of, 88
rosin in, 88–89
saponification value of, 90
test for impurities in, 89
wax in, 90
Lac
ash in, 90
color of, 90
copper in, 88
identification of, 77
insoluble matter in, 88
iodine value of, 88
matter soluble in water, 90
moisture in, 89–90
orpiment in, 90
purity of, 88
rosin in, 88–89
saponification value of, 90
test for impurities in, 89
wax in, 90
Lacquers
phthalic anhydride in, 94–95
plasticizer migration to, 421
Lampblacks, 160
chemical analysis of, 505–506
Latex paint
condition in container, 423
particle size of, 218
see also Architectural paint
Leach test, solvent, 163
Leaching rate, of antifouling paints, 481
Lead
cadmium, in zinc powder, 506
chromate in oleoresin, 510
in yellow, orange, and green pigments, 508
in driers, determination of, 72, 73, 74
salt method, for phthalic anhydride in alkyl resins, 94
pigments, 150–151
red, 150, 511
silico-chromate, basic, chemical analysis of, 508
in tribasic lead phosphosilicate, 501
white, carbonate, 150, 501
in zinc oxide pigments, 502
Leaching test, for aluminun paint, 417–418
Length, of printing ink, 493
Leveling
of paints, 207–210
in test for sealants, 447
Licata gel test, of metallic soaps, 75
Light, 1–12
affecting drying time, 269
reflectance of, 5
resistance to, in printing ink, 491
sources of, 1–4
transmittance of, 5
and particle size measurement, 225–226
Lightfastness of pigments, 411
in chromate pigments, 155
Line patterns, 388
Linseed oil, 53
boiled, detection of, 68
Liquid
Newtonian, 181
non-Newtonian, 181
Lithol red, 157
Lithopone, 150
Livering characteristics, in printing ink, 491
Lumber oil, 53
Lumineograms, ultraviolet, for cleanliness of steel panels, 379
Magnesium carbonate, as extender, 160
oxide, in magnesium silicate pigment, 503
panels of, for weathering tests, 383
for hiding power, 27–29, 36–37
for hiding power, 27–29, 36–37
Manganese in driers, determination of, 72, 73, 74
in red pigments, 509–510
in sienna and umber, 510
Mar resistance, 296–299
and abrasion resistance, 301
impinging abrasive method for, 297–298
miscellaneous methods for, 298–299
scuffing method for, 298
single scratch methods for, 296–297
Marine environment paints, 478–485
antifouling, 479–481
see also Antifouling paint
Cathodic protection of, 481–482, 483–484
rotor apparatus for testing of, 482, 484, 485
ship bottom coatings, 479
template inspection aid for, 480
test panels for, 478
tide range exposure tests of, 478
Maroons, 157, 159
Masonry
painting of, 429–435
see also Cement-base paint
weathering tests on, 383
Match test, vertical, for fire retardancy, 357
Matching of color
booth for, 2
instrumental, 37, 48–49
Materials (see Raw materials)
Mechanical properties of films, 281–340
abrasion resistance, 301–312
adhesion, 314–331
flexibility, 333–337
hardness, 281–299
tensile strength and elongation, 338–340
Melamine-formaldehyde
in alkyl resins, 99, 100
in nitrogen resins, 106
Melting point
bars for testing heat-resistant paint, 353
of resins, 79–81
of rosins, 85
of waxes, 436
see also Softening point
INDEX

Mercuric oxide pigment, 156
chemical analysis of, 511
Mercury, as substrate for free films, 358
Metal(s)
See also
Aluminum, for pigments, 509–510
in sienna and umber, 510
Mercury, as substrate for free films, 358
Metal-glide adhesion test, of polishes, 441–442
Metallic pigments, 161–162
chemical analysis of, 506
particle size of, 218, 230
Metallic soaps, 71–75
tests on, 74–75
Metallized azo pigments, 157–158
Metamerism, 2–3
Meters
drying time, 274
indentation, 290
moisture, 348–349
Methylecellulose, 121–122
Mica pigment, chemical analysis of, 503
edible by, 502
Microcharacter device, 282–283
Microcrystalline wax, properties of, 436, 437
Micro-cone and plate viscometer, 194
Microcrystalline wax, properties of, 436, 437
Micro-depth gage, for film thickness measurement, 262
Micromerimeters, 293, 317
Microknife, 283, 316–317
Micromerograpy, for particle size measurement, 223
Micrometers, for film thickness, 262
Microorganisms
affecting paint, 366–370
resistance to, 426
Mideradiography, X-ray, for particle size measurement, 235–236
Microscopy, 515–521
electron, 517
of antifouling paints, 481
for particle size measurement, 220
for film thickness measurements, 262–264
light, 515–516
for particle size measurement, 220
for particle size measurement, 220, 517–521
Migration
of flooring ingredients into polish, 441
of oil from sealants, 453
of plasticizers to lacquer, 421
Mildew, 389
Mill, glass, for pigment paste preparation, 42
Mill, friction, 424
Milling, 421
Miner, 517
Minetector, for film thickness measurement, 265
Miscibility
of driers, 71
of solvent and resin, 130–131
Mixing of pigments with vehicles, 41–43
Mixtures of pigments, oil absorption in, 247–248
Mobilometers, 198–199, 203, 208
for viscosity of sealants, 445
Moisture
affecting glass beads, 469
and blistering of paint, 391–392, 398–399
see also Blister formation and dew Detectors, 392, 408
in lac, 89–90
and masonry painting, 434–435
Metallic pigments, 157–158
Power loss type, 349
resistance type, 348–349
in oils, 64
in pigments, 500
in plasticizers, 125
from rainfall (see Rain)
in resins, 84
INDEX

N

Naphthenates, 71
Naphthol reds, 157
Needle thickness gage, for film thickness, 262
Newtonian liquid, 181
Nickel
azo yellow, 158
in copper pigments, 510
Night visibility, of traffic paint, 470-472
Nitrate, cellulose (see Cellulose nitrate)
Nitrate test, of alkyl resins, 101
Nitrocellulose (see Cellulose nitrate)
Nitrogen
in plasticizers, 126
in resins, 106-110
Nitroso pigments, 157
Nomographs, for rating weathering, 393, 403-404
Nuclear magnetic resonance spectroscopy, 564-581

O

Observer, standard, 4-5
Ochre pigments, chemical analysis of, 509-510
Orange pigments
of printing ink, 491
residual, of plasticizers, 125
of solvents, 146, 147
Oils
absorption of
by cement, 430
by pigments, 239-249
by printing inks, 491
bulking values of, 174
chromatography of, 437-438
drying, 53-70
see also Drying oils
fish oils, 53, 68-69
linseed oil, 53, 68
migration from sealants, 453
tall oil, 87-88
see also Tall oil
tung (see Tung oil)
volatiles, in rosin, 86
Oiticica oil, 53, 55
Opacity
of chrome pigments, 155
dry, federal test for, 31
Optical properties, 1-51
color and light, 1-12
gloss, 15-20
hiding power, 22-38
mass color and tinting strength, 41-50
Orange pigments
anthratone, 159
chemical analysis of, 508-510
chrome, 155
perinone, 159
Organic colored pigments, 156-159
hiding power of, 22
Oxidation of, 564-566
Nomographs, for rating weathering, 393, 403-404
Oxidation, of pigments, 163
Osmyl test, for adhesion, 326-329
for bond strength of sealants, 450-451
Peel tests
for adhesion, 326-329
for bond strength of sealants, 450-451
Peeling, 388
Penetrometer, hardness, 291
for putty and glazing compound, 452
Petrolatum, 55
Perylene orange, 159
Permanent pigments, 49-50
Permeation method, for particle size measurement, 229
Peroxide values, in oils, 65-66
Perspiration, resistance to, 353
in varnish, 421
Peylene scarlet, 159
pH
of electrocoating, 486
of pigments, 500
of polishes, 440
Phenolic resins, 110-111
alkyd, 100
solubility parameters of, 132
Phenols, in plasticizers, 126
Phthalic anhydride
in alkyl resins, 93-95, 100, 102
in lacquers, 94-95
Phthalocyanine pigments, 158
Physical properties, 165-250
bulking values, 172-176
density, 165-171
oil absorption by pigments, 239-249
particle size measurement, 218-233
specific gravity, 167-170, 177-180
surface energy, 213-217
viscosity and consistency, 181-210
Pigments, 150-164
and acid dye laking, 156
aluminate, 156
aluminum, 161
analysis of content in paints, 497
antimony trioxide, 151
azo, 156-158
condensation, 158
insoluble, 157
metallized, 157-158
black, 159-160
bronze, 161-162
bulking values of, 172-174
chemical analysis of, 500-514
cromate, 154-155
colored, 151-159
copper, 162
corrosion-inhibitive value of, 164
critical pigment volume, 253-247
and oil absorption, 246-247
density of (see Density)
dioxazine, 159
Penetration
of architectural paint, 425
of bituminous coatings, 463
and viscosity of organic coatings, 295
Penetrometer, hardness, 291
for putty and glazing compound, 452
Perilla oil, 55
Perinone orange, 159
Permanent pigments, 49-50
Permeation method, for particle size measurement, 229
Peroxide values, in oils, 65-66
Perspiration, resistance to, 353
in varnish, 421
Peylene scarlet, 159
pH
of electrocoating, 486
of pigments, 500
of polishes, 440
Phenolic resins, 110-111
alkyd, 100
solubility parameters of, 132
Phenols, in plasticizers, 126
Phthalic anhydride
in alkyl resins, 93-95, 100, 102
in lacquers, 94-95
Phthalocyanine pigments, 158
Physical properties, 165-250
bulking values, 172-176
density, 165-171
oil absorption by pigments, 239-249
particle size measurement, 218-233
specific gravity, 167-170, 177-180
surface energy, 213-217
viscosity and consistency, 181-210
Pigments, 150-164
and acid dye laking, 156
aluminate, 156
aluminum, 161
analysis of content in paints, 497
antimony trioxide, 151
azo, 156-158
condensation, 158
insoluble, 157
metallized, 157-158
black, 159-160
bronze, 161-162
bulking values of, 172-174
chemical analysis of, 500-514
cromate, 154-155
colored, 151-159
copper, 162
corrosion-inhibitive value of, 164
critical pigment volume, 253-247
and oil absorption, 246-247
density of (see Density)
dioxazine, 159
Penetration
of architectural paint, 425
of bituminous coatings, 463
and viscosity of organic coatings, 295
Penetrometer, hardness, 291
for putty and glazing compound, 452
Perilla oil, 55
Perinone orange, 159
Permanent pigments, 49-50
Permeation method, for particle size measurement, 229
Peroxide values, in oils, 65-66
Perspiration, resistance to, 353
in varnish, 421
Peylene scarlet, 159
pH
of electrocoating, 486
of pigments, 500
of polishes, 440
Phenolic resins, 110-111
alkyd, 100
solubility parameters of, 132
Phenols, in plasticizers, 126
Phthalic anhydride
in alkyl resins, 93-95, 100, 102
in lacquers, 94-95
Phthalocyanine pigments, 158
Physical properties, 165-250
bulking values, 172-176
density, 165-171
oil absorption by pigments, 239-249
particle size measurement, 218-233
specific gravity, 167-170, 177-180
surface energy, 213-217
viscosity and consistency, 181-210
Pigments, 150-164
and acid dye laking, 156
aluminate, 156
aluminum, 161
analysis of content in paints, 497
antimony trioxide, 151
azo, 156-158
condensation, 158
insoluble, 157
metallized, 157-158
black, 159-160
bronze, 161-162
bulking values of, 172-174
chemical analysis of, 500-514
cromate, 154-155
colored, 151-159
copper, 162
corrosion-inhibitive value of, 164
critical pigment volume, 253-247
and oil absorption, 246-247
density of (see Density)
dioxazine, 159
INDEX

...
INDEX

Temperature
- color, 1-2
differential thermal analysis, 562-563
and drying time, 269
effects on varnish, 421
and flexibility, 333, 336
of sealants, 449, 451
freeze-thaw stability of architectural paint, 426
in sudden chill test, 411
see also Heat

Tenacity, of caulking compound, 449

Tensile adhesiveness
- of putty, 449
tests for, 323-326

Tensile strength
and abrasion resistance, 301
and elongation, 338-340

Tension, for leveling studies, 207-208

Tension, surface, 213-214
measurements of, 214-216

Terephthalic acid, in alkyl resins, 95-96

Test panels (see Panels for testing)

Thermal analysis, differential, 562-563

Thickness of film, measurement of, 260-267

Thiocyanate value, of oils, 60-61

Thiodyne maroon, 159

Thiourea, in nitrogen resins, 107-108

Thiourea-formaldehyde, in nitrogen resins, 107

Thixotropy, 181

Throwing power, of electrocoating paints, 487

Tidal conditions, simulation of, 411

Tide range exposure tests, 478

Tooth gages, for wet film thickness, 261

Toxicity, test panels for, 226

Torsion, 33-34, 259

Torque tests, of adhesion, 326

Touch controller, for drying time determination, 276

Traffic paint, 468-477
abrasion resistance of, 312, 472-473
adulteration of, 474-477
bleeding resistance of, 473
chipping of, 473-476
flexibility of, 470
glass beads testing, 468-469
night visibility of, 470-472
no-pick-up time for, 469-470
road tests of, 473-474
schedule of tests for, 468
stability and settling properties of, 468
water resistance of, 473
weathering tests of, 473

Transmittance
- of light, 5
- and particle size measurement, 225-226
of ultraviolet radiation, by pigments, 163
of water vapor, 341-343

Trimmers, in bodied oil, 68

Tristimulus colorimeters, 12

Tung oil, 55

adulteration of, tests for, 66-68
optical dispersion of, 62-63
Tunnel tests, of fire retardance, 360-361
Turboviscometer, 190

Twisting cork test, for indentation hardness, 294

Typographic inks, 490

U

Ultracentrifuge
- for adhesion test, 329-330
- sedimentation by, 225

Ultramarine blue, 156
chemical analysis of, 508

Ultrasonic vibration test, for adhesion, 329

Ultraviolet luminograms, for cleanliness of
- steel panels, 379

Ultraviolet radiation, 3
- and fluorescent sunlamps, 409

Ultraviolet spectrophotometry (see Spectrophotometry)

Ultraviolet spectroscopy, 545-546

Umbre pigments, 156
chemical analysis of, 509-510

Uniformity, of bituminous emulsions, 466

Unsaturation, in fats and oils, 57-61

Urea, in nitrogen resins, 107

Urea-formaldehyde, in alkyl resins, 98-100

in nitrogen resins, 107

Urethane materials, in resins, 109-110

V

Varnish
- clear floor sealer tests of, 421
dry film, 419-421
hardness and abrasion resistance of, 421
irregularities in, 419-420
plasticizer migration to, 421
resistance to perspiration, 421
rubbing property of, 420-421