SIGNIFICANCE OF TESTS AND PROPERTIES OF Concrete & Concrete-Making Materials

EDITORS:
Joseph F. Lamond
James H. Pielert
Significance of Tests and Properties of Concrete and Concrete-Making Materials

STP 169D

Joseph F. Lamond and James H. Pielert, Editors
ASTM Stock No.: STP169D
Foreword

THIS PUBLICATION is a revision and expansion of Significance of Tests and Properties of Concrete and Concrete-Making Materials (STP 169C) published in 1994. That publication in turn replaced editions published in 1956, 1966, and 1978. The present publication includes a number of new materials and test methods that have been developed, or materials that have increased in importance since the 1994 edition. Two most useful additions are the chapters on slag as a cementitious material and self-consolidating concrete.

As in the previous editions, chapters have been authored by individuals selected on the basis of their knowledge of their subject areas, and in most cases because of their participation in the development of pertinent specifications and test methods by ASTM Committee C09 on Concrete and Concrete Aggregates and, in some cases, ASTM Committee C01 on Cement. The authors developed their chapters in conformance with general guidelines only. Each chapter has been reviewed and, where necessary, coordinated with chapters in which overlap of subject matter might occur.

This latest edition has been developed under the direction of the Executive Committee of ASTM Committee C09 by coeditors Joseph F. Lamond, Consulting Engineer, and James H. Pielert, Consultant, both members of Committee C09.
Contents

Chapter 1: Introduction—Joseph F. Lamond and James H. Pielet..........................1

PART I

GENERAL

Chapter 2: The Nature of Concrete—Richard A. Helmuth and Rachel J. Detwiler......5
Chapter 3: Techniques, Procedures, and Practices of Sampling of Concrete
and Concrete Making Materials—Toy S. Poole...16
Chapter 4: Statistical Considerations in Sampling and Testing—
Garland W. Steele..22
Chapter 5: Uniformity of Concrete-Making Materials—Anthony E. Fiorato......30
Chapter 6: Virtual Testing of Cement and Concrete—Dale P. Bentz,
Edward J. Garbozzi, Jeffrey W. Bullard, Chiara Ferraris, Nicos Martyrs,
and Paul E. Stutzman..38
Chapter 7: Quality Cement, Concrete, and Aggregates—The Role
of Testing Laboratories—James H. Pielet..51

PART II

FRESHLY MIXED CONCRETE

Chapter 8: Factors Influencing Concrete Workability—D. Gene Daniel...........59
Chapter 9: Air Content, Temperature, Density (Unit Weight), and
Yield—Lawrence R. Roberts..73
Chapter 10: Making and Curing Concrete Specimens—Joseph F. Lamond.....80
Chapter 11: Time of Setting—Bruce J. Christensen.......................................86
Chapter 12: Bleed Water—Steven H. Kosmatka..99

PART III

HARDENED CONCRETE

Chapter 13: Concrete Strength Testing—Celik Ozyildirim
and Nicholas J. Carino..125
Chapter 14: Prediction of Potential Concrete Strength at Later Ages—
Nicholas J. Carino..141
Chapter 15: Freezing and Thawing—Charles K. Nmai...................................154
Chapter 16: Corrosion of Reinforcing Steel—Neal S. Berke........................164
Chapter 17: Embedded Metals and Materials Other Than
Reinforcing Steel—Bernard Erlin...174
Chapter 18: Abrasion Resistance—Carl J. Bakke..184
Chapter 19: Elastic Properties, Creep, and Relaxation—Jason Weiss.........194
Chapter 20: Petrographic Examination—Bernard Erlin................................207
Chapter 21: Volume Change—Fred Goodwin...215
Chapter 22: Thermal Properties—Stephan B. Tatro....................................226
Chapter 23: Pore Structure, Permeability, and Penetration Resistance
Characteristics of Concrete—Nataliya Hearn, R. Douglas Hooton,
and Michelle R. Nokken..238
Chapter 24: Chemical Resistance of Concrete—M. D. A. Thomas
and J. Skalny..253
Chapter 25: Resistance to Fire and High Temperatures—Stephan S. Szoke....274
Chapter 26: Air Content and Density of Hardened Concrete—
Kenneth C. Hover...288
Chapter 27: Analyses for Cement and Other Materials in Hardened
Concrete—William G. Hime..309
Chapter 28: Nondestructive Tests—V. Mohan Malhotra............................314
PART IV
CONCRETE AGGREGATES

Chapter 29: Grading, Shape, and Surface Texture—ROBIN E. GRAVES337
Chapter 30: Bulk Density, Relative Density (Specific Gravity), Pore Structure, Absorption, and Surface Moisture—JOHN J. YZENAS, JR.346
Chapter 31: Soundness, Deleterious Substances, and Coatings—STEPHEN W. FORSTER ...355
Chapter 32: Degradation Resistance, Strength, and Related Properties of Aggregates—RICHARD C. MEININGER ...365
Chapter 33: Petrographic Evaluation of Concrete Aggregates—G. SAM WONG ..377
Chapter 34: Alkali-Silica Reactions in Concrete—DAVID STARK.............................401
Chapter 35: Alkali-Carbonate Rock Reaction—M ICHAEL A. OZOL410
Chapter 36: Thermal Properties of Aggregates—D. STEPHEN LANE......................425

PART V
OTHER CONCRETE MAKING MATERIALS

Chapter 37: Hydraulic Cements—Physical Properties—LESLIE STRUBLE435
Chapter 38: Hydraulic Cement-Chemical Properties—SHARON M. DEHAYES
AND PAUL D. TENNIS ..450
Chapter 39: Mixing and Curing Water for Concrete—JAMES S. PIERCE462
Chapter 40: Curing and Materials Applied to New Concrete Surfaces—BEN E. EDWARDS ...467
Chapter 41: Air-Entraining Admixtures—ARA A. JEKNAVORIAN474
Chapter 42: Chemical Admixtures—BRUCE J. CHRISTENSEN AND HAMID FARZAM...............................484
Chapter 43: Supplementary Cementitious Materials—SCOTT SCHLORHOLTZ495
Chapter 44: Slag as a Cementitious Material—JAN R. PRUSINSKI512

PART VI
SPECIALIZED CONCRETES

Chapter 45: Ready Mixed Concrete—COLIN L. LOBO AND RICHARD D. GAYNOR533
Chapter 46: Lightweight Concrete and Aggregates—THOMAS A. HOLM
AND JOHN P. RIES ...548
Chapter 47: Cellular Concrete—FOUAD H. FOUAD ..561
Chapter 48: Concrete for Radiation Shielding—DOUGLAS E. VOLKMAN570
Chapter 49: Fiber-Reinforced Concrete—PETER C. TATNALL578
Chapter 50: Preplaced Aggregate Concrete—EDWARD P. HOLUB..........................591
Chapter 51: Roller-Compacted Concrete (RCC)—WAYNE S. ADASKA595
Chapter 52: Polymer-Modified Concrete and Mortar—D. GERRY WALTERS605
Chapter 53: Shotcrete—JOHN H. PYE ..616
Chapter 54: Organic Materials for Bonding, Patching, and Sealing Concrete—RAYMOND J. SCHUTZ ..625
Chapter 55: Packaged, Dry, Cementitious Mixtures—DENNISON FIALA631
Chapter 56: Self-Consolidating Concrete (SCC)—JOSEPH A. DACZKO
AND MARTIN VACHON ...637

INDEXES

Index ..647
JOSEPH LAMOND

Before establishing his own consulting practice in 1989, Joseph Lamond was employed by the U.S. Army Corps of Engineers for 32 years. Mr. Lamond received a BS degree in Civil Engineering from the University of Massachusetts in Dartmouth. He is a registered Professional Engineer in the Commonwealth of Massachusetts.

While with the U.S. Army Corps of Engineers as a Concrete Materials Engineer in the New England and Washington offices, he was involved in the design and construction of Army, Air Force, and Civil Works projects. The projects involved design reports on concrete materials, specifications, and construction evaluation. He managed the Corps’ concrete materials criteria, guide specifications, testing, training, and research for structural, mass, roller-compacted, and pavement concrete.

Mr. Lamond was also the Engineering Director for the Pyramont Division of Lone Star Industries. He was project manager for chloride-induced corrosion in bridges for the National Academy of Sciences, Strategic Highway Research Program and consultant on the concrete durability programs.

Mr. Lamond is a fellow of ASTM International and an Honorary member of ASTM Committees C09 on Concrete and Concrete Aggregates and C01 on Cement. He was the recipient with Paul Kliger of the ASTM Charles B. Dudley Award as co-editor of ASTM STP 169C Significance of Tests and Properties of Concrete and Concrete-Making Materials. He serves on seven subcommittees and was past chairman of the Subcommittee on Testing Concrete for Strength. He is a fellow of the American Concrete Institute and served on the Board of Direction.

Mr. Lamond continues his interest as an engineering consultant on concrete, concrete materials, and concrete construction and serves as an expert witness in litigation.

JAMES PIELERT

James Pielert worked in the steel industry as a Research Development Engineer from 1961 to 1971. He joined the National Institute of Standards and Technology (NIST) in 1971, working there until 2000. He managed the AASHTO Materials Reference Laboratory and the Cement and Concrete Reference Laboratory, which are located at NIST; from 1983 to 2000. These laboratories provide programs for evaluating the quality of testing of construction materials in more than 1200 laboratories worldwide. He went to work for the American Association of State Highway and Transportation Officials in 2000 and continued to manage these programs in conjunction with ASTM International until he retired in 2005.

Mr. Pielert received a BS degree in Civil Engineering from the University of Maryland and an MS degree from Lehigh University in Civil Engineering. He is a registered Professional Engineer in Maryland and Pennsylvania.

Mr. Pielert is an Honorary Member of ASTM Committees C09 on Concrete and Concrete Aggregates and C01 on Cement. He has chaired C01 and C09 Subcommittees on International Activities, and a C01 Subcommittee on Coordination of Standards. He is a fellow of the American Concrete Institute and the American Society of Civil Engineers (ASCE). He chaired the ASCE Standards Committee on Condition Assessment and Rehabilitation of Buildings and has over 40 publications in the field of structural design and analysis, and construction materials technology.