TECHNICAL ADVANCES IN PACKAGING WITH FLEXIBLE BARRIER MATERIALS
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The symposium on Technical Advances in Packaging with Flexible Barrier Materials was presented at Rutgers University, New Brunswick, N.J., 12 April 1972. The symposium was sponsored by ASTM Committee F-2 on Flexible Barrier Materials with the cooperation of ASTM Committee D-10 on Packaging and the Rutgers' Center for Packaging Science and Technology. Karl W. Ninnemann, Allied Chemical Corp., Morristown, N.J. served as presiding chairman over the symposium and J. A. Yourtee was responsible for the coordination of the symposium volume.
Related
ASTM Publication

Paper and Paperboard—Characteristics, Nomenclature, and Significance to Tests. STP 60 B (1963), $4.00 (04-060020-11)
Contents

Introduction 1

Heat Seal Thickness-Strength Correlations—DONALD MILLER 3
 Procedure 6
 Results 6
 Discussion 9
 Conclusions 9

Analysis of Polychlorinated Biphenyls in Packaging Materials—
 J. R. GIACIN AND S. G. GILBERT 10
 Toxicological Considerations 10
 PCB Contamination of Foodstuff 12
 Methodological Difficulties 12
 Experimental Procedures 13
 Results and Discussion 14
 Conclusions 19

A Gravimetric Calibration Procedure for Modern Controls IRD-2
 Infrared Water Vapor Diffusometer and Its Correlation with
 Results from ASTM Method E 96—N. D. BORNSTEIN
 AND LeROY PIKE 20
 Gravimetric Calibration Procedure 22
 Equipment 23
 Preparation of Standard Film and Calculation of Calibration
 Constant for the IRD-2 23
 Gravimetric Calibration Data Obtained and Some Observations
 from It 24
 Observations from the Calibration Data and IRD-2
 Characteristics 25
 Round Robin Comparison of the IRD-2 and ASTM Method
 E 96 26
 Conclusions 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Equations</td>
<td>30</td>
</tr>
<tr>
<td>Deformation of a Liquid-Filled Package</td>
<td>31</td>
</tr>
<tr>
<td>Stacking of Membrane Packages</td>
<td>33</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td>37</td>
</tr>
<tr>
<td>Pros and Cons of Biodegradation— W. A. PATTERSON</td>
<td>38</td>
</tr>
<tr>
<td>Alice, Litter, Scientific Bandwagons, and Archeologists</td>
<td>41</td>
</tr>
<tr>
<td>Is All This Activity Necessary or of Any Value?</td>
<td>42</td>
</tr>
<tr>
<td>What is Biodegradation?</td>
<td>43</td>
</tr>
<tr>
<td>Biodegradation is Neither Simple nor Necessarily a Fast Way Out</td>
<td>43</td>
</tr>
<tr>
<td>The Mechanism of Biological Attack</td>
<td>44</td>
</tr>
<tr>
<td>Degradation Microorganisms for Plastics</td>
<td>45</td>
</tr>
<tr>
<td>What are the Environmental Implications of a Biodegradable Polymer?</td>
<td>45</td>
</tr>
<tr>
<td>Biodegradation in Sanitary Landfills</td>
<td>46</td>
</tr>
</tbody>
</table>