INSTRUMENTATION FOR
MONITORING AIR QUALITY

A symposium sponsored by the Environmental Protection Agency, the National Center for Atmospheric Research, and Committee D-22 on Methods of Sampling and Analysis of Atmospheres

AMERICAN SOCIETY FOR TESTING AND MATERIALS
Boulder, Colo., 14-16 Aug. 1973

ASTM SPECIAL TECHNICAL PUBLICATION 555
R. C. Barras, symposium chairman

List price $15.25
04-555000-17

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
Foreword

The symposium on Instrumentation for Monitoring Air Quality was held at the University of Colorado in Boulder, Colo., 14-16 Aug. 1973. Committee D-22 on Methods of Sampling and Analysis of Atmospheres, the Environmental Protection Agency, and the National Center for Atmospheric Research sponsored the symposium. R. C. Barras, Atlantic Richfield Co., presided as symposium chairman.
Related

ASTM Publications

Interlaboratory Cooperative Study of the Precision and Accuracy of the Measurement of Nitrogen Dioxide Content in the Atmosphere Using ASTM Method D 1607, DS 55 (1974), $5.00 (05-055000-17)

Interlaboratory Cooperative Study of the Precision and Accuracy of the Measurement of Sulfur Dioxide Content in the Atmosphere Using ASTM Method D 2914, DS 55-S1 (1974), $5.00 (05-055010-17)

Interlaboratory Cooperative Study of the Precision of the Measurement of Particulate Matter in the Atmosphere (Optical Density of Filtered Deposit) Using ASTM Method D 1704, DS 55-S3 (1974), $5.00 (05-055030-17)

Interlaboratory Cooperative Study of the Precision and Accuracy of Measurement of Dustfall Using ASTM Method D 1739, DS 55-S4 (1974), $5.00 (05-055040-17)
Contents

Introduction

1

Performance Evaluation of SO₂ Monitoring Instruments—

L. J. PURDUE 3

Performance Specifications 4

Review of Methods 5

Conclusion 7

Selection of Continuous Sulfur Dioxide Monitors for Ambient and Source Concentration Levels—R. C. NEUSCHELER 9

Discussion 9

Monitoring Sulfur Compounds by Flame Photometry—D. P. LUCERO AND J. W. PALJUG 20

Flame Photometric Detector 20

FPD Sulfur Analyzer 24

Analyzer Output Response 28

Calibration 30

Operation and Maintenance 31

Applications 31

Performance Specifications 33

Monitoring Oxides of Nitrogen—An Overview—G. R. GOLDGRABEN 36

Ambient Air Monitoring 37

Occupational Health Monitoring 41

Stationary Source Analysis 41

Engine Exhaust Monitoring 42

Conclusions 43

Instrumentation for the Measurement of Nitrogen Dioxide—

R. K. STEVENS, THOMAS CLARK, RALPH BAUMGARDNER, AND J. A. HODGESON 44

Discussion 45
Major Subsystems and Important Performance Parameters in the Gas Chemiluminescent Analyzer 115
Important Operating Conditions and Maintenance Tasks 116
Recent Developments and Future Trends 117

Automatic Chemical Analysis—The First Line of Approach—
R. D. GOLDBERG 118

Air Pollution Applications 118
Summary 122

Monitoring Trace Metal Particulates: An Evaluation of the Sampling and Analysis Problems—R. K. SKOGERBOE 125

The Blank Problem 125
Filter Efficiency 126
Analytical Determinations 133

Filter Media for Atmospheric Sampling and Analysis—
W. J. SMITH AND A. L. BENSON 137

Some Problems 138
Filter Selection 139
Current Development Programs 142

Measuring Particulate Matter in Air—R. E. LEE, JR. 143

Definition of Particulate Matter 143
Concentration Measurement Methods 144
Particle Sizing Considerations 149
Particle Sizing Methods 152
Calibration of Size Classifying Devices 154
Conclusions 155

Recent Developments in In Situ Size Spectrum Measurement of Submicron Aerosols—R. B. HUSAR 157

Size Spectrometry by Optical Single Particle Counting 160
Instrument Performance 162
Description of the Ellipsoid Mirror Optical Counter 164
Theoretical Response of the Ellipsoid Mirror Optical Counter 165
Calibration with Polystyrene Latex Spheres 168
Electrical Aerosol Analyzer (EAA) 170
Principle of Operation 172
Calibration of the EAA 172
Size Resolution of the EAA 180
Diffusion Battery 183