WATER QUALITY PARAMETERS

A symposium cosponsored by the Canada Centre for Inland Waters and the Analytical Chemistry Division of the Chemical Institute of Canada Burlington, Ontario, Canada, 19-21 November 1973

ASTM SPECIAL TECHNICAL PUBLICATION 573
Silvio Barabas, general chairman

List price $29.50
04-573000-16

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The Symposium on Water Quality Parameters—Selection, Measurement, and Monitoring was held on 19-21 November 1973 at the Canada Centre for Inland Waters in Burlington, Ontario, Canada. The symposium was cosponsored by the Canada Centre for Inland Waters and the Analytical Chemistry Division of the Chemical Institute of Canada. Silvio Barabas, Canada Centre for Inland Waters, presided as the general chairman.

This publication was sponsored by the American Society for Testing and Materials' Committee on Publications.
Related
ASTM Publications

Biological Methods for the Assessment of Water Quality, STP 528 (1973)
$16.25, 04-528000-16

Microorganic Matter in Water, STP 448 (1969) $9.25, 04-448000-16

Contents

Introduction

<table>
<thead>
<tr>
<th>Inorganic Analysis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asbestos Fibers in Lake Superior—R. W. Durham and T. Pang</td>
<td>5</td>
</tr>
<tr>
<td>Analytical Method</td>
<td>6</td>
</tr>
<tr>
<td>Results</td>
<td>7</td>
</tr>
<tr>
<td>Discussion</td>
<td>12</td>
</tr>
<tr>
<td>Spectrophotometric Determination of Sulfide in Water—</td>
<td>14</td>
</tr>
<tr>
<td>F. A. J. Armstrong</td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>15</td>
</tr>
<tr>
<td>Recommended Method</td>
<td>15</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>16</td>
</tr>
<tr>
<td>Electrochemical Detection of NH₄⁺-NH₃ Systems in Water—</td>
<td>20</td>
</tr>
<tr>
<td>J. Barica</td>
<td></td>
</tr>
<tr>
<td>Determination of Ionized NH₄⁺ with a Univalent Cation Electrode</td>
<td>21</td>
</tr>
<tr>
<td>Determination of Total Ammonia with an Ammonia Probe</td>
<td>23</td>
</tr>
<tr>
<td>Direct Determination of Free Unionized Ammonia</td>
<td>23</td>
</tr>
<tr>
<td>Discussion</td>
<td>24</td>
</tr>
<tr>
<td>Determination of Total Mercury Levels in Natural Waters—</td>
<td>25</td>
</tr>
<tr>
<td>S. Nishi and Yoshiyuki Horimoto</td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>26</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>27</td>
</tr>
<tr>
<td>Analysis of Zn⁺⁺, Cd⁺⁺, and Pb⁺⁺ in Natural Waters by Anodic Stripping Voltammetry Using a Rotating Pt:Hg Electrode—</td>
<td>30</td>
</tr>
<tr>
<td>Pierre Pichet and Monique Grandmaison</td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>30</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>31</td>
</tr>
<tr>
<td>Summary</td>
<td>34</td>
</tr>
<tr>
<td>Automated Method for Sulfate Determination in Lake Water—</td>
<td>35</td>
</tr>
<tr>
<td>M. A. Santiago, Saundra Fielek, and C. L. Schelske</td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>36</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>37</td>
</tr>
<tr>
<td>Conclusion</td>
<td>44</td>
</tr>
<tr>
<td>Measurable Inorganic Carbon Parameters in Seawater—</td>
<td>47</td>
</tr>
<tr>
<td>C. S. Wong, R. D. Bellegay, and A. B. Cornford</td>
<td></td>
</tr>
<tr>
<td>Selection of Parameters</td>
<td>48</td>
</tr>
<tr>
<td>Experimental Techniques</td>
<td>49</td>
</tr>
<tr>
<td>Discussion</td>
<td>54</td>
</tr>
</tbody>
</table>
Critical Review of Analytical Techniques for the Determination of Soluble Pollutant Heavy Metals in Seawater—
D. C. BURRELL AND MENG-LEIN LEE
Detection Limits and Applicability 59
Seawater Matrix Problems 63
Chemical Speciation of Soluble Fraction 64
Sampling and Pre-Analysis Processing 67

Survey Analyses of Trace Elements in Water by Spark Source Mass Spectrometry—I. H. CROCKER
Experimental 73
Results and Discussion 78

Nuclear Activation Determination of Heavy Metals in Great Lakes Sediments, Soils, and Vegetation—R. E. JERVIS,
AMARES CHATTOPADHYAY, E. CSILLAG, AND B. TIEFENBACH
Nuclear Activation Techniques (NAA and PAA) 83
Studies of Lower Great Lake Sediments: Selenium and Antimony (NAA) 87
Toxic Metal Accumulation in Aquatic Species (NAA) 91
Studies of Heavy Metal Uptake in Marsh Soils: (IPAA) 92
Conclusions 93

Trace Elements in Molluscs in the Kingston Basin—
D. A. LORD, W. G. BRECK, AND R. C. WHEELER
Experimental 98
Results and Discussion 100
Conclusion 108

Analysis of Total Mercury in Biological and Water Samples by an Ultrasensitive Kinetic Method—P. J. KE AND
R. J. THIBERT
Experimental 114
Procedure 115
Results and Discussion 116

Rapid Determination of Cyanide in Waste Waters—
OM P. BHARGAVA, G. W. DELINE, AND W. G. HINES
Experimental 124
Calibrations and Procedure 124
Effect of Variation in NaOH Concentration 124
Effect of Sulfide 125
Effect of Thiocyanate, Thiosulfate, and Ferrocyanide 126
Precision 126
Recovery (Accuracy) 127
Conclusions 127

Rapid Determination of Fluoride in Hydrochloric Acid, Pickle Liquor, and Gaseous Emissions—OM P. BHARGAVA,
A. A. SCHULDT, AND W. G. HINES
Experimental 130
Reagents 130
Determination of Fluoride in HCl 131
Determination of Fluoride in Pickle Liquor 131
Determination of Fluoride in Gaseous Emissions 131
Interference Study 132
Iron Interference in F Determination in Pickle Liquor
Effect of HCl Concentration
Summary

Scanning Electron Microscopy and Energy Dispersive X-ray Microanalysis of Nuclear Reactor Corrosion Particles—A. G. Wikjord, G. H. Mayor, and F. E. Doern
Experimental
Discussion
Conclusions

Preservation of Wastewater Effluent Samples for Forms of Nitrogen and Phosphorus—D. F. Krawczyk
Experimental
Results
Conclusions

Organic Analysis

Guidelines for Quantitative Liquid-Liquid Extraction of Organophosphate Pesticides from Water—I. H. Suffet, C. Wu, and D. T. L. Wong
Method of Approach
Experimental
Results
Summary

Pesticide Residue Screening Methods Utilizing Multidetector Configurations—H. A. McLeod and D. E. Coffin

Analysis of Organochlorine Residues in Fish—L. M. Reynolds and T. Cooper
Cleanup of Biological Tissue Extracts
Analyses of Fat or Oil Samples for Low Levels of OC Residues
PCB Quantitation

Some Factors Affecting the Recovery of Polychlorinated Biphenyls (PCB's) from Water and Bottom Samples—T. A. Bellar and J. J. Lichtenberg
Experimental
Results and Discussion
Conclusions

Liquid Chromatography of Carbamate Pesticides—A. D. Thruston, Jr
Experimental
Results and Discussion
Conclusions

Uncoated Teflon as Support and Stationary Phase for Liquid/Solid Gas Chromatography—K. L. E. Kaiser
Properties of Teflon as Support
Experimental
Results and Discussion
Direct Aqueous Injections
Conclusion
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications of Direct Aqueous Injection Gas Chromatography and Freeze Concentration for the Determination of Organic Compounds in Water and Waste Waters</td>
<td>M. E. FOX</td>
<td>242</td>
</tr>
<tr>
<td>Residual Methanol in Sewage</td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>Aircraft Deicer in Sewage</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>Kraft Pulp Mill Effluent Plume</td>
<td></td>
<td>248</td>
</tr>
<tr>
<td>Gas Chromatographic Determination of Low Concentrations of Hydrocarbons in Water by Vapor Phase Extraction</td>
<td>DONALD MACKAY, W. Y. SHIU, AND A. W. WOLKOFF</td>
<td>251</td>
</tr>
<tr>
<td>Theoretical</td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td>254</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>Polycyclic Aromatic Hydrocarbons in Lake Waters and Associated Sediments: Analytical Determination by Gas Chromatography-Mass Spectrometry</td>
<td>M. T. STROSHNER AND G. W. HODGSON</td>
<td>259</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
<td>262</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td>262</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>269</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>Quantitative Analysis of Petroleum Oil Pollutants by Infrared Spectrophotometry</td>
<td>MICHAEL GRUENFELD</td>
<td>290</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td>293</td>
</tr>
<tr>
<td>Results and Discussions</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td>Biological Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problems in the Monitoring of Biomass</td>
<td>N. H. F. WATSON, G. F. CARPENTER, AND M. MUNAWAR</td>
<td>311</td>
</tr>
<tr>
<td>Biomass Estimation</td>
<td></td>
<td>312</td>
</tr>
<tr>
<td>Procedure</td>
<td></td>
<td>312</td>
</tr>
<tr>
<td>Heavy Metal Toxicity and Algal Bioassays</td>
<td>T. C. HUTCHINSON AND P. M. STOKES</td>
<td>320</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td>321</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>Conclusion</td>
<td></td>
<td>342</td>
</tr>
<tr>
<td>Algal Assays: Development and Application</td>
<td>T. E. MALONEY AND W. E. MILLER</td>
<td>344</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td>346</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>Conclusion</td>
<td></td>
<td>353</td>
</tr>
<tr>
<td>Effect of Body Weight on Uptake of Methyl Mercury by Fish</td>
<td>A. S. W. DE FREITAS AND J. S. HART</td>
<td>356</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td>357</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td></td>
<td>359</td>
</tr>
</tbody>
</table>
Monitoring and Remote Sensing

Experiences in Operating a Continuous Water Quality Monitoring Network—J. E. HAGAN AND R. L. ESTES 367
The System 368
Procedures 373
Cost 373

Automatic Water Quality Monitoring Within the Saint John River Basin—D. H. CULLEN 375
Monitor Purchase 376
Physical Arrangement and Operation of Monitors 376
Monitor Locations 380
Field Monitor Services 381
Operational Problems and Applied Corrective Measures 384
Monitoring Servicing 388
Data Output 388
Assessment 389
Future Outlook for AWQM’s 390

Experimental 392
Calibration 394
Discussion 395

Underwater Probing with Laser Radar—S. SIZGORIC AND A. I. CARSWELL 398
Lidar Design Considerations 399
The Marine Lidar System 403
Measurements 406
Conclusion 412

Fast Kinetic Spectrometry and Automated Trace Analysis—C. H. LANGFORD 414

Sensors for Monitoring Water Quality—R. S. INGOLS AND T. F. CRAFT 418
Design Considerations 418
Sampling 421
Conclusion 423

Fluorescence 424
Remote Sensing 427
The Laser Fluorosensor 427
Field Trials 429
Conclusion 434
Possible Future Development 434

REX, A Computer Controlled Robot for In Situ Water Quality Monitoring—K. N. BIRCH 437
The Basic System Configuration 438
The Robot Sensing Head 441
The Measurement of Water Quality Parameters 445
Conclusions 453
Utilization of Data from Continuous Monitoring Networks---
C. G. GUNNERSON 456
Data and Analyses 458
Discussions and Conclusions 474

Parameter Selection and Quality Control

Environmental Impact of Experimental Oil Spills in the
Canadian Arctic---W. A. ADAMS, B. F. SCOTT, AND
N. B. SNOW 489
Study Area 491
Methods 492
Experimental Oil Spills 498
Discussion and Conclusions 510

Investigation of the Weathering of a Selected Crude Oil in a
Cold Environment---B. F. SCOTT 514
Study Area Preparation 515
Analytical Procedures 515
Results and Discussion 516
Summary 522

Sampling Techniques in Urban Runoff Quality Studies---
J. MARSALEK 526
Composite Sampling Techniques to Determine the Total
Pollutant Yield from a Runoff Event 527
Sampling Techniques to Determine the Pollutant
Concentration Variation 530
Practical Aspects of Sampling Installations in Urban Runoff
Studies 536
Conclusions 541

Stable Carbon Isotope Ratios as Water Quality Indicators---
F. C. TAN AND G. J. PEARSON 543
Carbon Isotope Ratios of Various Carbon Reservoirs 544
Principles of δ13C Technique 544
Analytical Techniques 546
Application 547
Selection of Background δ13C Values 548
Limitations and Applicability of the Method 549

Data Are for Looking At or Quality Control Through
Interpretation---J. M. BEWERS, I. D. MACAULAY,
BJØRN SUNDBY, AND D. E. BUCKLEY 550
Data Interpretation and Corrective Feedback 551
Input Data Inspection 552
Data File Interpretation 554
Sediment Data 563
Conclusions 565

Interlaboratory Study of the Cold Vapor Technique for Total
Mercury in Water---J. A. WINTER AND H. A. CLEMENTS 566
Experimental 567
Results 569
Discussion 579
Conclusions 579