Subject Index

A
Adhesive joints, stress analysis and energy release rate, 580
Aluminum alloy
 crack-tip opening angle, 90
 large-scale thin-sheet, 451
 mixed mode I/II loading, 105
Anisotropic solids, cracks, boundary element method, 517
ASTM A 533, 352
ASTM E 399, 31
ASTM E 1152, 406

B
Beam-truss elements, 580
Biaxial stress effect, 31
Boundary element method, cracks in anisotropic solids, 517
Boundary force method, stress intensity factor, 530
Brittle fracture, 550
 constraint effect, 31

C
Calibration, stress intensity factor, 530
Chell WPS model, 243
Cladding, 387
Cleavage fracture, local approach, 387
Coach-peel specimen, 469
Constraint, 175, 367
 brittle fracture, 31
 modelling, crack growth, 72
Contact stresses, pin-loaded lug joints, 598
Corner crack, 563
Crack aspect ratio, 550
Crack closure, 301, 317, 352
Crack depth, effect on fracture toughness, 175
Crack depth to width ratio, 175
Crack geometries, 216
Crack growth
 constraint modelling, 72
 initiation, 72
 stable, 61, 105
 subcritical, 3
Crack growth resistance
 geometry and size effects, 126
 mismatched weld joints, 427
Crack initiation
 mixed mode I/II loading, 105
 S-N curve, 352
Crack interacting factor, 550
Cracks
 anisotropic solids, 517
 perforate titanium, 490
Crack shape, 352
Crack surface, morphology, fracture behavior and, 152
Crack surface friction, 152
Crack tip
 ductile-brittle transition, 27
 stress fields, 31
Crack tip opening angle
 mixed mode I/II loading and grain orientation, 105
 plane stress, 61
 stable tearing and fracture prediction, 90
Crack tip opening displacement, 105
 crack depth and, 175
Crack tip plastic zone, 287
Crack-tip stress strains, 216
Cyclic loading, ductile tearing, 406

D
Deformation, inelastic, 598
Delta J, 317
Dislocations
 anisotropic solids, 517
 mobility, hydrogen effects, 338
Dodds-Anderson scaling model, 367
Ductile-brittle transition, fracture, 27
Ductile tearing
 cyclic loading, 406
 welded structural details, 201

E
Edge-notched beam, stress intensity factor calibration, 530
Elastic analysis, interaction between surface cracks, 550
Elastic-plastic analysis, pin-loaded lug joints, 598
Elastic-plastic fatigue crack growth, 317
Elastic-plastic fracture, mechanics, 267
mismatched weld joints, 427
Elastic-plastic notch tip stresses and strains, 613
Elastomeric materials, fatigue crack growth damage, 505
Embedded crack, 563
Energy dissipation rate, 126
Environment
absorbed hydrogen effect, 338
natural rubber, 505
η-factor method, 367

Fracture toughness
A533-B steel, 175
brittle fracture, 31
cyclic loading effect, 406
finite element analysis, 367
J-Q model, 27
large-scale thin-sheet aluminum alloy, 451
underclad cracks, 387
Front solver, 550
Full-thickness clad beams, fracture analysis, 367

G
Geometry effects, 126
Grain orientation, 105
Griffith’s criterion, 505

H
Hydrogen, absorbed, effect on microstructure, 338

I
Impact failure, resistance spot welds, 469
Instability, energy dissipation rate, 126
Integral equation, 152
Interference fit, 598
Internal stresses, 301
Iosipescu beam, 530

J
J-integral, 61, 175, 406
energy dissipation rate, 126
stable tearing analysis, 201
J-Q methodology, 367
crack growth experiments, 72
fracture in ductile-brittle transition, 27
J-R curve, 406
mismatched weld joints, 427

L
Laminar flow control, 490
Large deformation, finite element analysis, 216
Life prediction, 287, 317
multidisciplinary research, 3
nuclear pressure vessel steel, 352
perforate titanium, 490
Limit load, 201
Linear elastic fracture mechanics, 31, 267
Loading, combined, 317
Load ratio, natural rubber, 505
Local approach cleavage fracture, 387
Low-alloy steel, absorbed hydrogen effect, 338
Lug joints, pin-loaded, 598
M
Materials, life prediction, 3
Mechanisms, life prediction, 3
MFM threshold condition, 267
Microstructural fracture mechanics, 267
Microstructure
 absorbed hydrogen effect, 338
 fatigue crack growth, 287
Mismatching, 427
Mixed mode fracture, crack surface morphology, 152
Mixed mode I/II loading, 2024-T3 aluminum, 105
Mixed mode I/III loading, fracture behavior, 152
Modelling
 constraint, crack growth, 72
 fracture in ductile-brittle transition, 27
Multiaxial loading, proportional, 613
Multidisciplinary approach, life prediction, 3
Multiple cracks, 550
Multiple site damage, large-scale thin-sheet aluminum alloy, 451

N
Neuber rule, generalized, 613
Notch fatigue, 301
Notch stress fields, 301
Notch tip stresses and strains, 613
Nuclear pipe steels, cyclic loading effect, 406
Numerical solution algorithm, 613

O
Overload conditions, resistance spot welds, 469
Oxygen, effect on natural rubber, 505

P
PD 6493, 201
Peel stresses, 380
Pin-loaded lug joints, fatigue crack growth, 598
Plane stress crack growth, 61
Plastic zone, large-scale thin-sheet aluminum alloy, 451

Q
Quasi-compatible elements, 550

R
R-curve, 451
Reactor pressure vessel, 367
Replication method, 352
Residual stresses, 301
Resistance spot weld failure, overload conditions, 469
RKR model, 72
Rubber, natural, fatigue crack growth, 505

S
Self-consistency, 152
Shallow crack, 367
Shallow flaw, 175, 387
Shear beam, edge-notched beam, 530
Short crack growth, 301
Similitude, 287, 301
Single crystal threshold, 267
Single-edge notch bend specimens, 367
Singular elements, 550
Size effects, 126
 brittle fracture, 31
Small cracks, 352
S-N curve, 352
Stable tearing analysis, 201
Strain energy density method, generalized, 613
Stress
 ductile-brittle transition, 27
 reference, 317
Stress analysis, 517
Stress intensity factor
 edge-notched beam, 530
 normalized, 550
 pin-loaded lug joints, 598
 weight function method, 563
Stress-strain response, finite element analysis, 216
Structural integrity, 387
Subclad flaw, 243, 387
Surface cracks, 317, 550
 interaction between, 550
 weight function method, 563
Surface flaw, 243

T
Tear-fatigue, 317
Tearing, stable
 crack-tip opening angle, 90
 mixed mode I/II loading, 105
Temperature, natural rubber, 505
Tensile response, perforate titanium, 490
Tensile-shear specimen, 469
T^r integral, 61
Testing, life prediction, 3
Threshold stress intensity factor, 287
Titanium, commercially pure, fatigue response, 490
Toughening, 152
Transition, crack growth, 72
Transition toughness, 27
U
Underclad cracks, fracture mechanics, 387
Undermatched welds, 427

W
Warm prestressing, 243
Weak link, stress-controlled fracture, 27

Weibull model, 387
Weight function method, 563
Welded structural details, ductile tearing, 201
Weld joint geometry, mismatched, 427
Weldments
 resistance spot weld failure, 469
 strength, 427
Weld nugget/heat affected zone, 469