Subject Index

A

Adhesives, 3
Adsorption capacity, 139
ASTM standards, 240
D 2216, 23
D 5321, 89

B

Barrier layers, 139
Bearing capacity, 251
Bonding, 3

C

Calcium, 139, 162
California Bearing Ratio penetration test, 251
Cation exchange capacity, 162
Compatibility, 139, 181
Composite lining system, 71
Concrete, 150
Conditioning procedure, 45
Conformance testing, 23, 71, 240
Cover stability, 30
Creep, 103
shear characteristics, 89
Cutting, 45

D

Degradation, 139
Displacement curves, 103
Displacement rate, 251

E

Effective stress, 208

F

Flow box, 196
Force-displacement relationship, 251
Freeze-thaw, 196
Friction, 89

G

Geosynthetic Research Institute, 23

H

Heat burnishing, 3, 229
High density polyethylene, 71, 229
Hydration, 55, 121, 150, 181, 251
Hydraulic barrier characterization, 55
Hydraulic compatibility, 150
Hydraulic conductivity, 45, 139, 162, 196, 208
Hydraulic properties, 240

I

Interaction, 181
Interface, 121
friction, 71
shear tests, 55
Inundation method, 55
Ion exchange, 162

L

Leachates alkaline, 139
permeability, 181
Loading, 89, 103, 121, 251

M

Magnesium, 162
Mechanical properties, 240
Mineral oil, 150
Moisture content, 23
Mold diameter, 251

Needle punched liners, 3, 181, 229
hydrated, 121
shear tests, 55, 89, 103
single, 45
swell pressure, 30

Oedopermeameter, 181

Penetration test, 251
Permeability, 139, 181, 196
Permeameter, flexible wall, 45, 196, 208
Potassium, 162
Precipitation volume, 150

Quality control testing, 3, 139, 240
Geosynthetic Research Institute, 23

Recovery basins, 150
Sample preparation methodology, 45
Seismicity, 71
Shear
creep, 89
creep shear test, 103
direct, 89
interface, 55
internal, 121
strength, 89, 103, 121, 229
strength, internal, 71
testing, 30
Slope, 229
stability, 30, 71
Stitch analysis, 71
Stitch bonding, 3, 55
Strength
internal shear, 121
shear, 89, 103, 121
Stress, effective, 208
Surcharge pressure, 251
Swell, 23, 139, 181, 240
oedometer, 55
pressure, 30
Thermally locked fibers, 89
Time-displacement curves, 103
Transformers, 150
Trimming, 45
Wetting, 208