Subject Index

<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustical testing, 510</td>
</tr>
<tr>
<td>Aging, 197</td>
</tr>
<tr>
<td>Aluminum foil, 283</td>
</tr>
<tr>
<td>American Iron and Steel Institute, 153</td>
</tr>
<tr>
<td>Amplitude attenuation, 355</td>
</tr>
<tr>
<td>Anisotropy, 243</td>
</tr>
<tr>
<td>ASTM standards, 23, 510</td>
</tr>
<tr>
<td>C 236, 3, 46, 128</td>
</tr>
<tr>
<td>C 578, 224</td>
</tr>
<tr>
<td>C 692, 485</td>
</tr>
<tr>
<td>C 976, 3, 46, 73</td>
</tr>
<tr>
<td>C 1199, 3, 46, 73</td>
</tr>
<tr>
<td>C 1303, 197</td>
</tr>
<tr>
<td>E 96, 456</td>
</tr>
<tr>
<td>Attic insulation settling, 259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast conditions, 498</td>
</tr>
<tr>
<td>Blowing machine, 216</td>
</tr>
<tr>
<td>Bromide, 485</td>
</tr>
<tr>
<td>Bulk density, 91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium chloride, 180</td>
</tr>
<tr>
<td>Calibration tests, 46</td>
</tr>
<tr>
<td>Capillary active material, 426</td>
</tr>
<tr>
<td>Capillary suction, 416</td>
</tr>
<tr>
<td>Cell size distribution, 307</td>
</tr>
<tr>
<td>Cellulose, 216, 259</td>
</tr>
<tr>
<td>Chloride, 485</td>
</tr>
<tr>
<td>Coconut fiber, 283</td>
</tr>
<tr>
<td>Concrete block, 128</td>
</tr>
<tr>
<td>Concrete form systems, insulated, 224</td>
</tr>
<tr>
<td>Concrete roof, 426</td>
</tr>
<tr>
<td>Condensation resistance, 23</td>
</tr>
<tr>
<td>Condensation studies, 403, 416</td>
</tr>
<tr>
<td>Condensation, surface, 473</td>
</tr>
<tr>
<td>Conductivity, 355</td>
</tr>
<tr>
<td>Contact resistance, 355</td>
</tr>
<tr>
<td>Copper tubing, 473</td>
</tr>
</tbody>
</table>

| Corrosion cracking, stress, 473, 485 |
| Cushioning properties, polystyrene, 224 |

<table>
<thead>
<tr>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, installed loose-fill, 216</td>
</tr>
<tr>
<td>Density, coconut fiber, 283</td>
</tr>
<tr>
<td>Design, calibrated hot box apparatus, 73</td>
</tr>
<tr>
<td>Dew point studies, 403</td>
</tr>
<tr>
<td>Diffusivity, 355, 381</td>
</tr>
<tr>
<td>Dry cup method, 456</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge guards, 46</td>
</tr>
<tr>
<td>Effective U-value, glazing, 61</td>
</tr>
<tr>
<td>Energy conservation requirements, 224</td>
</tr>
<tr>
<td>European Committee for Standardization, 109</td>
</tr>
<tr>
<td>Evacuation techniques, 270</td>
</tr>
<tr>
<td>Explosion, 498</td>
</tr>
<tr>
<td>Extinction coefficient, 307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan coil units, 473</td>
</tr>
<tr>
<td>Fasteners, 128</td>
</tr>
<tr>
<td>Fenestration, 46, 73, 91</td>
</tr>
<tr>
<td>U-factor testing, 3, 61</td>
</tr>
<tr>
<td>Finite difference method, 109</td>
</tr>
<tr>
<td>Finite difference modeling, 128, 153</td>
</tr>
<tr>
<td>Fire conditions, 498</td>
</tr>
<tr>
<td>Fluoride, 485</td>
</tr>
<tr>
<td>Foam, 292</td>
</tr>
<tr>
<td>closed cell polyurethane, 307</td>
</tr>
<tr>
<td>polystyrene, 91, 197, 224</td>
</tr>
<tr>
<td>Frame flanking, 46</td>
</tr>
<tr>
<td>Frost insulation, 442</td>
</tr>
<tr>
<td>Furnaces, 498</td>
</tr>
</tbody>
</table>
INSULATION MATERIALS: TESTING AND APPLICATIONS

G
Gate opening, loose-fill blowing machine, 216
Glass, cellular, 283
Glass panes, 270
Glass wool, 243
Glazing, double pane, 61
Guarded hot plate, 91, 337, 381
Gypsum plaster, 283

H
Halogen, 485
HCFC-142b, 197
Heat flow, 23
meter apparatus, 381
Heat fluxes, 381
Heat, specific, 140
Heat transfer, 153, 243, 381, 426
absorption effects on, 366
coefficients, 3, 61
models, 23
scattering effects on, 366
Hot box methods, 3, 153, 283
ASTM C 236, 3, 46, 128
ASTM C 976, 3, 46, 73
ASTM C 1199, 3, 46, 73
calibrated, 73
constant temperature, 283
guarded, 46, 109, 128, 381
laboratory, 23
Hot plate method, guarded, 91, 381
miniature, 337
Humidity, 403, 456
Hygro-Wick concept, 416

I
Immersion, water, 442
Infrared imaging radiometers, 23
Insulated concrete form systems, 224
International Organization for Standardization
guarded hot box method, 109
Intumescent materials, 498
Iodide, 485

J
Jet fire, 498
Joints, steel stud/track, 128

K
Krypton, 61, 270

L
Loose-fill thermal insulation, 216, 259

M
Magnesia, 292
Material layers, 140
Metal stud wall systems, 153
Mineral fiber loose-fill material, 216, 259
Mineral wool, 243, 426
Modeling, 243
attic insulation settling, 259
computer, 180
finite difference, 128, 153
heat transfer, 23
thermal, 153
Moisture content, 403, 416, 426, 442, 524
Moisture transfer, 403, 416, 426, 442, 456
Morphology, closed cell foam, 307

N
National Fenestration Rating Council, 3
National Institute of Standards and Technology, 91, 337
Noble gas, 61
Noise reduction, 510
Nonadiabatic methods, 524
Numerical simulation, 426

O
Oil platforms, offshore, 498
Oscillation techniques, 355
INDEX 541

P
Panels
 evacuated thermal insulation, 270
 structural insulated, 224
Particle size distribution, 292
Peak load management, 180
Perlite, 180
Permeance, 416, 456
Phase change material, 180
Phase shift, 355
Phenolics, 473
Piping, cold, 416
Piping, copper, 473
Plane flow method, 292
Polystyrene, 91, 180, 197, 224, 442
Polyurethane foam, 307
Pore size distributions, 292
Porosity, 292
Powder filling, 270

R
Radiation absorption, 366
Radiation scattering, 366
Radiative model, 243
Refrigerants, 473
Retrofitted assemblies, thermal performance, 403
Rim seal, 270
Rock wool, 243
Roof, dew point studies, 403
R-value, 128, 153, 337, 381

S
Scaling, 197
Scattering, radiation, 292, 366
Seal, glazing unit, 61
Self-drying concept, 416
Sensors, temperature, 140
Settling, insulation, 259
Silica powder, 270
Slicing, 197
Slug diameter, 243
Sodium silicate, 485
Sound velocity, 61
Stainless steel, 485
Standard reference material, 91
Steel thermal bridges, 128
Stress corrosion cracking, 473, 485
Structural insulated panels, 224
Surface emittance, 23
Surface heat transfer coefficients, 3, 91
Surface resistance, 456
Surface temperature methods, 3, 23

T
Thermal bridges, 128
Thermal conductivity, 337, 366, 524
closed cell foam effects on, 307
dependence, 292
frost insulation, 442
loose-fill insulation, 259
magnesia foam, 292
material layers, 140
metal stud systems, 153
pure, 381
standard reference material, 91
temperature oscillation techniques, 355
time average, 197
vacuum insulation, 270
Thermal control, 180
Thermal design, 337
Thermal diffusivity, 355, 366, 381, 524
Thermal heat transfer coefficient, 270
Thermal mass, 180
Thermal modeling, 153
Thermal radiation, background, 23
Thermal resistance, 109, 140, 403
finite, 381
loose-fill material, 259
measurement systems, 91
small specimens, 337
Thermal transmittance measurements, 3, 46, 73
Thermography procedures, 23
Thermohygric behavior, 426
Transient heat transfer, 366
Tubing, copper, 473
U

Ultrasonic transducers, 61
Uncertainty, 109
Urine, 473
U-value testing, 3, 61, 109

V

Validation, computer model, 23
Vapor barrier, 426
Vapor diffusion, 442, 524
Vapor pressure, 403, 426
Vapor resistance, 403, 442, 456
Vapor retarder, 416
Vapor transmission, 456
Vermiculite, 283
Vibration effects, 259
Viscoelasticity, 259

W

Wall configurations, 140
Wall guards, 46
Wall heat flow meter, 46
Wall plate heater system, 46
Water resistance, polystyrene, 224
Wall systems, 128
acoustic testing, 510
metal stud, 153
Wetting, 442
Wicking, 416
Window and door systems, 3, 46, 73, 91
Window test methods, 91
acoustic, 510

X

Xenon, 61