Subject Index

A

Aluminum, 294
Arc deformation, 68
ASTM standards
 F 28, 88, 268

B

Boron, 199
 iron-boron, 47, 59, 80, 206, 294
 iron-boron, and electron trapping, 68
 iron-boron, measurement method capability, 206
Bulk lifetime, 5, 80, 101

C

Carrier decay, excess minority, 88, 101
Carrier injection levels, 206
Carrier lifetime, 47, 259, 268, 367
 characteristics, 268
 effective, 80, 156
 factors influencing, 206
 measurements, 47
 minority, 147, 199, 328, 347
 Czochralski silicon, 226, 250
 Elymat technique, 101, 112
 temperature dependence, 68
 photoconductivity decay determination, 168
 silicon surface, 147
Chemical mechanical polishing, 168
Chemical passivation, 268
Chemical purity, 283
Chromium, 206
 chromium-boron, 59, 206
Cobalt, 206
Copper, 18, 259, 294
Corona charge, 80

Crystals
growth, 318
 multicrystals, 88

D

Damage, subsurface, 168
Decontamination monitoring, 250
Defect introduction, rapid thermal processing, 250
Denuded zone, 305
Diffusion length, 305, 318, 367
 data, wafers exposed to cleans, 283
 effective carrier, 88
 minority carrier, 5, 30, 112, 328
 sample preparation impact on, 185
 setup impact on, 185
 surface photovoltage, 125, 199
 transition metals effect on, 18
Diffusion, metallic contamination, 219

E

Electron/hole lifetime, 68
Elymat technique, 30, 101, 112, 226, 283, 305
Energy level, impurity, 5
Epitaxial, 47
 growth, 318
 layers, 268

F

Finite element method, 88
Frequency, high modulation, method, 147
Frequency resolved photoconductance, 68
<table>
<thead>
<tr>
<th>G</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate oxide integrity, 168</td>
<td>Lattice microdefects, 18</td>
</tr>
<tr>
<td>Geometry effect, 88</td>
<td>Light illumination, 59</td>
</tr>
<tr>
<td>Gettering, 226, 250, 268, 318 intrinsic, 168</td>
<td></td>
</tr>
<tr>
<td>Gold, 206</td>
<td></td>
</tr>
<tr>
<td>Grain boundary recombination, 88</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Impurity densities, 5</td>
<td>Metallic impurities, identifying, 59</td>
</tr>
<tr>
<td>Impurity identification, 59, 80</td>
<td>Metal silicide precipitates, 101</td>
</tr>
<tr>
<td>Injection level, 125, 206, 259, 305 analysis, 101</td>
<td>Metals (See also specific types)</td>
</tr>
<tr>
<td>control, 226</td>
<td>contamination, 156, 294</td>
</tr>
<tr>
<td>influence of, 80</td>
<td>contamination, correlation</td>
</tr>
<tr>
<td>iron-boron effects, comparison by, 59</td>
<td>with particle</td>
</tr>
<tr>
<td>lifetime dependence on, 5</td>
<td>contamination, intentional, 185</td>
</tr>
<tr>
<td>Lorentzian amplitude dependence on, 68</td>
<td>electrolytical metal tracer, 305</td>
</tr>
<tr>
<td>role of, 30</td>
<td>impurities, effect on lifetime, 294</td>
</tr>
<tr>
<td>search, 112</td>
<td>impurities, effects of, 347</td>
</tr>
<tr>
<td>Interface trap density, 47</td>
<td>impurities, identifying, 59</td>
</tr>
<tr>
<td>Iodine-ethanol chemical passivation technique, 268</td>
<td>silicide precipitates, 101</td>
</tr>
<tr>
<td>Iron, 18, 68, 168</td>
<td>transition, 18, 59, 226, 318</td>
</tr>
<tr>
<td>bulk concentration, 185</td>
<td>wafer handling</td>
</tr>
<tr>
<td>chemical nature identification, 101</td>
<td>contamination, 219</td>
</tr>
<tr>
<td>concentration measurement, 125, 199, 259</td>
<td>Microdefects, 18, 125</td>
</tr>
<tr>
<td>contamination, effect on lifetime, 294</td>
<td>bulk, 305</td>
</tr>
<tr>
<td>contamination, wafer handling, 219</td>
<td>Microwave reflectance,</td>
</tr>
<tr>
<td>energy level, 5</td>
<td>photoconductivity decay</td>
</tr>
<tr>
<td>gettering capability, 268</td>
<td>by, 347</td>
</tr>
<tr>
<td>high injection level region, 259</td>
<td>Minority carrier decay, excess, 88</td>
</tr>
<tr>
<td>iron-boron, 47, 59, 80, 206, 294</td>
<td>Minority carrier diffusion length, 5, 30, 305, 328</td>
</tr>
<tr>
<td>iron-boron, and electron trapping, 68</td>
<td>degradation, 18</td>
</tr>
<tr>
<td>iron-boron, measurement method capability, 206</td>
<td>imaging technique, 112</td>
</tr>
<tr>
<td>measurement comparison, 199</td>
<td>surface photovoltage method, 125</td>
</tr>
<tr>
<td>segregation, 30</td>
<td>Minority carrier lifetime, 147, 199, 328, 347</td>
</tr>
<tr>
<td></td>
<td>Czochralski silicon, 226, 250</td>
</tr>
<tr>
<td></td>
<td>Elemyt technique, 101, 112</td>
</tr>
<tr>
<td></td>
<td>temperature dependence, 68</td>
</tr>
<tr>
<td></td>
<td>Mirror polishing, 168</td>
</tr>
<tr>
<td></td>
<td>Modulated photocurrent, 156</td>
</tr>
<tr>
<td></td>
<td>Molybdenum, 47, 168</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Nelder-Mead nonlinear fitting method, 250</td>
</tr>
<tr>
<td></td>
<td>Nickel, 294</td>
</tr>
</tbody>
</table>
Nitrogen, 259
Non-contact measurement, 147
Nonlinear simplex fitting procedure, 68

O
Optical excitation effect, 59
Oxygen concentrations, 199
Oxygen levels, 185
Oxygen precipitates, 30, 101, 226, 268, 318
characterization, 305

P
Particle contamination, 219
Passivation, 250, 259, 318
chemical, 268
surface, 80, 206, 367
Photoconductance decay, 185, 250
Photoconductance, frequency resolved, 68
Photoconductive decay, 168, 206
ASTM F 28, 88, 268
comparison, surface
photovoltage methods, 185, 199, 206
correlation with other methods, 30, 259
gallery effects on, 88
laser microwave, 68, 250
microwave, 47, 59, 80, 226, 294
microwave reflectance, 347
sample inhomogeneity effects on, 88
Photoconductivity amplitude signal, 168
Photocurrent, modulated, 156
Photoluminescence technique, laser excited, 268
Photovoltaics, 18
solar cell, wafers for, 367
Point defects, 226
Primary mode lifetime, 347

R
Resistivity characteristics, 112
values, microwave reflectance test, 347

S
SEMI, solar silicon
standardization, 367
Slip dislocations, 250
Solar silicon, 367
Spatial nonuniformities, 328
Spectroscopy, deep level transient, 199, 259, 294
Statistical process control, 156
Surface charge analyzer, 156
Surface contamination, 156
Surface electrical properties, 185
Surface inversion layers, 47
Surface passivation, 80, 206, 367
Surface photovoltage, 156
correlation with other methods, 185, 199, 206
diffusion length, 199
gallery effects on, 147
metal contamination characterization, 219, 294
method status, 125
theoretical basis, 185
Surface recombination, 5, 88
velocity, 5, 168, 185, 226, 328
chemical passivation technique, 268
measurement issues, 156
metal silicide precipitate relation, 101
reduction, 80
temperature dependence, 68

T
Thermal processing, 318
rapid, 250
Thermal treatment, 283
Titanium, 59
Trapping centers, 68

U

Ultraviolet/millimeter wave technique, 168

V

Velocity, surface recombination, 5, 168, 185, 226, 328
chemical passivation technique, 268
measurement issues, 156

metal silicide precipitate relation, 101
reduction, 80
temperature dependence, 68

W

Wet chemical process cleaning, 283

X

X-ray fluorescence, total reflection, 30
X-ray topography, 250