Subject Index

A

Acoustic pulses, 642
Adhesive fatigue, 764
Adhesive fracture, 764
Adhesives, structural, 764
Adjusted compliance ratio, 674
Aircraft
aging, 97
high speed civil, 713
Aluminum
2024-T3, 815
2324-T39, 674
6013-T651, 674
7075-T6, 552
7075-T7751, 674
alloy, 407, 426, 727, 815
plates, 97
specimens, 453
ASTM standards
A 508, Cl13, 284
A 533, Grade B, 17, 341
A 723, 897
E 647, 674
opening load method, 674
Autofrettage, 565, 584

B

Bauschinger effect, 565
Bending loads, 552
Beremin model, 284
Bicycle components, off-road, 743
Blunting model, crack tip, 552
Bridge specimens, 696
Brittle fracture, 40, 154
Buckling, 114

C

Calibration, 862
Calibration function, 248
Cannon components, high
strength steel, 897
Carbon precipitate/nickel grain boundary interfaces, 384
Carrier cloth, 764
Cell models, 9
Center-cracked plate specimen, 9, 82
Charpy specimens
precracked, 55
precracked Charpy v-notch, 135
sub-Charpy-size, 40
Cladding, 284
Cleavage fracture, 135, 284, 341
Coarsening, heterogeneous, 786
Compact tension specimens, 284, 674, 815, 851
Compact toughness specimen, 830, 862
Composite materials
carbon fiber-reinforced polymer, 713
Compression, 474
Computational cell methodology, 9, 135
Constant amplitude fatigue cycling, 642
Constant amplitude loading, uniform, 453
Constitutive model, 264
Constraint, 40, 55, 135
evaluation, 830
Contact geometry, 696
Continuum damage models, 851
Cracks and cracking
axial, through wall, 215, 830
closure, 426, 496, 674, 727
closure, resulting growth rates, 407
closure, fatigue, 438
closure, plasticity-induced, 453, 516
closure, roughness-induced, 535
closure technique, virtual, 176
configuration, 114
development, 599
engineering size, failure
 definition, 599
extension, 884
extension, 82, 264
extension, ductile, 135
fatigue, 786
fatigue, nucleation process,
 614
fatigue, propagation, 474, 552
fields, asymptotic, 233
front, 658, 862
front mesh normality, 176
growth, 565
growth behavior, 516
growth, ductile, 851, 862
growth, fatigue, 407, 426, 552,
 658, 713
growth, fatigue, measurement,
 ASTM E 647, 674
growth, fatigue, theory, 496
growth, increment, 438
growth, mixed mode, 658
growth, plastic, 233
growth, plasticity-induced, 535
growth rate, 438, 897
growth, stable, 97, 341, 815
initiation, 642
length, critical, 830
length, relation to displacement
 and load, 82
length to specimen width
 ratio, 114
multiple site damage, 114
oblique, 658
opening angle, 884
opening displacement, 764
opening displacement
 method, 176
propagation, 453, 674
propagation stress intensity
 factor, 474
size, 496
small, 426, 496
specimens, surface, 55
surface, 453
tension specimens, surface, 55
threshold, environmental
 cracking, 897
tip blunting, 552
tip constraint, 284
tip cyclic strain, 674
tip displacement field, 438

D

Creep, 384
Creep/fatigue crack growth, 215
Critical planes, 599
Crossbore intersections, 584
Cylinders, 215
 thick-walled, 565

D

Damage mechanics, 201, 364
Damage models, 851
Damage, multiple site, 815
Damage tolerance, 713, 727
Defects, butt welds, 862
Deformation, 82, 384
 factor, 248
 fields, 233
 plastic, 264, 552
Dispersions strengthening, 786
Displacement, relation to load
 and crack length, 82
Driving force, 496
 mechanical, 474
Ductile-brittle regime, 9
Ductile-brittle transition, 17, 55
Ductile crack extension, 135
Ductile crack growth, 851, 862
Ductile damage, 201, 341
Ductile fracture, 248, 364
Ductile tearing, 40, 82, 341, 884
 prediction, 201
 resistance, 135
 stable, 851
Ductility, residual, 884
Durability, 713
Dynamometers, 743

E

Elastic-plastic, 97
 fracture, 264
Elastoplastic stress, 233
Energy absorption rate, 496
Equivalent domain integral
 method, 176
Exclusion region theory, 264
Extraction methods, 176
Failure assessment, 248
Failure loads, buckling influence on, 114
Failure model, micromechanical, 341
Failure stresses, 815
Fasteners, 384
Fatigue, adhesive, 764
Fatigue analysis, multiaxial, 614, 599
Fatigue crack growth, 407, 426, 552, 658, 713
analysis, 215
measurement, ASTM E 647, 674
theory, energy consideration basis, 496
Fatigue crack nucleation process, 614
Fatigue crack propagation, 474
Fatigue cracks, 565
Fatigue damage, ultrasonics for, 642
Fatigue durability enhancement, 584
Fatigue failure, 743, 764
Fatigue, high cycle, 626
Fatigue life estimation, 584, 802
Fatigue lifetime, 565
Fatigue limit, 626
Fatigue, low cycle, 626
Fatigue, railroad, 614
Fatigue strength, 764
Fatigue test, 802
Fatigue, thermomechanical, 786
Fatigue threshold, 674
Fatigue, variable amplitude, 727
Ferritic structural steel, 40
Fiber bridging, 713
Fiber diameter, 393
Finite element analysis, 9, 176, 201, 284, 802
curved specimen cracks, 658
ductile crack growth, 851
nonlinear, 135
plane strain, 135, 552
predicting ductile tearing, 82
shell, 97
three-dimensional, 135, 215, 815, 830
Finite element code, two-dimensional, 264
Finite element mesh, 201
Flat plate specimen, 658
Four point bend fatigue tests, 438
Fracture, adhesive, 764
Fracture resistance, 233, 315
Fracture toughness, 154, 315, 393

crack tip constraint influence on, 284
dynamic, 17
predictions, 341
transition region, 40
Fretting fatigue tests, 696
Fuselage panel test, 713
Geometric constraint, 658
Gradient effect, 364
Grain boundary precipitates, 384
Grain size, 535
Gurson model, 201, 341, 364
Gurson-Tvergaard dilatant plasticity formulation, 862
Haigh diagram, 626
Handlebar forces, 743
Heat affected zone, 315
Helicopter loading spectra, 727
High-speed civil transport, 713
Homogenization, 154
Honeycomb sandwich, 713
Hoop stress, residual compressive, 565
Hydrogen cracking, 897
Hydrogen laden propellant environments, 897
I-beam specimen, 82
Impact loading, 135
Impact specimens, 40
Intergranular failure, 384
J-integral, 55, 215, 830, 884
Joints, solder, 786
Joints, welded, 315
J-Q approach, 9
J-R curve, 884
J-T approach, 9

L

Laminate sandwich fuselage panel test, 713
Lead-tin eutectic solders, 786
Length scale, 201
Life prediction, 474
Linear damage rule, 743
Load, applied, 642, 658
Load, crack opening, 407
Load factor, 248
Loading, biaxial, 764
Loading, constant amplitude, 453
Loading, cyclic, 453
Loading, elastic, 426
Loading, high amplitude, 743
Loading, impact, 135
Loading, multiaxial, 599
Loading, proof, 584
Loading rates, crack tip, 17
Loading, service, 584
Loading spectra, 727
Loading, structural, 743
Loading, tensile shear, 802
Loading, uniaxial, 599
Loading/unloading, 496
deformation, 552
Load interaction effect, 474
Load, limit, 884
Load method, opening, 674
Load ratio, 516
Load ratio effects, 802
Load, relationship to
displacement and crack
length, 82
Load reversal, 438
Load, shear, 764
Loads, variable amplitude, 802
Local approach, 284, 315
Local compression, 154

M

Master curve, 55
Mechanical driving force, 474
Mesh size effect, 201

Micromechanical failure
model, 154
Micromechanical parameters,
Gurson, 364
Microscopy, high resolution,
384
Microstructure, 535
Microstructure evolution, solder
joints, 786
Microvoid density, 407
Middle crack tension specimens,
674, 815
Miner's linear damage rule, 743
Mixed mode specimens,
independently loaded, 764
Mohr-Coulomb yield condition,
233
Moiré interferometry, 438
Multiaxial fatigue analysis, 599,
614
Multiple-site damage
specimens, 815

N

Nicalon, 393
Nickel-copper alloys, 384
Nickel-iron base alloys,
austenitic, 897
Nil-ductility temperature, 17
Notch plasticity, 516
Notch strain analysis, 584

O

Oscilloscope, digitizing, 642
Overload effect, 474
Overloading, controlled,
techniques, 584

P

Palmgren-Miner's rule, 803
Pedal forces, 743
Piezoelectric transducers, 642
Pipes, pressurized, 215
Plane strain three point bend
specimen, 201
Plastic constraint, 496
Plastic crack growth, 233
Plasticity, 438, 535
 crack tip, 552
 criterion, reverse, 584
Plasticity-induced closure, 453
Plastic strain, 565
Plastic strain energy, 496
Porosities, initial material, 862
Precleavage tearing, 851
Pressure sensitivity, 233
Pressure tube, 830
Pressure vessel shell weld, 851
Pressure vessel steel, 17, 40
Pressure vessel structural
 integrity, 284
Proof loading, 584
Propellant environments,
 hydrogen laden, 897

R
Rail grinding, 614
Railroad rails, 614
R-curves, 862
Reduced strain technique, 407
Residual compressive hoop
 stress, 565
Residual compressive stress, 584
Residual strength, 82, 97
 prediction, 815
Residual stress, 154, 516
 Bauschinger effect on, 565
 compressive, 474, 584
 railroad rail fatigue, 614
Reverse plasticity criterion, 584
Reverse yielding, 552, 565
Rolling contact, 614
Roughness, 535
R ratio effect, 496

S
Shearing force, 696
Silicon carbide, 393
Single lap shear, 786
Size effects, 40, 233
Slip contact, partial, 696
S-N interpolation approach, 626
S-N method, 743
Solder microstructures, 786
Stable crack growth, 97, 341,
 815
Stable tearing, 884
 behavior, 114
STAGS shell code, 114
Steel, 40
 18G2AV, 516
 A 508 C13, 284
 A 533, Grade B, 17, 341
 A 723, 897
 EH-36, 884
 ferritic structural, 40, 341
 high strength, cannon
 components, 897
 high strength low alloy, 82,
 642, 884
 pressure vessel, 17, 341
 railroad rails, 614
Strain amplitude, 599
Strain, cyclic, 674
Strain energy, stored, 215
Strain hardening, 642
Strain saturation, 642
Stress amplitude, 599
Stress analysis, 453
 finite element, 897
Stress, applied, 496
Stress effect, mean, 802
Stress effects, residual, 614
Stress field, residual, 516
Stress incursion, plastic zone,
 474
Stress intensity factor, 176,
 565, 897
 correlation with crack
 growth increment,
 438
 crack propagation, 474
 crack tip, 696
 effective, 674
 Weibull stress and, 284
Stress intensity range, 426
Stress, maximum principal, 658
Stress ratio, 407, 426, 626
Stress/rupture specimens, 384
Stress-strain curve, 82
Stress-strain technique, 830
Stress-zone volume, 830
Stretch zone, 496
Strain incursion, plastic zone, 474
Strip-yield model, 453, 516
Structural calibration function,
 248
Structural components, 743, 884
Structural constraint, 341
Structural stress method, 802
Subclad flaw, 284
Superposition method, 154
Surface closure measurements, 407
Surface cracks, 453
Surface flaws, 393
Surface roughness, 535

T
Tearing, stable, prediction, 815
Tensile behavior, 393
Tensile residual stress, subsurface, 614
Tensile shear loading, 802
Tensile stress, 393
Thermomechanical fatigue, 786
Three-dimensional computational fracture mechanics, 176
Three-point bend, 9, 315
plane strain specimen, 201
specimens, 154
Tin enrichment, 786
Titanium
alloy, 727
foils, 713
Ti-6Al-4V, 626
Train derailment, 614
Transferability, 315
Transformation procedure, simplified, 248
Transition region
ductile-brittle, 55
temperature, 40
T-stress, 341
Tube, autofretted, 565
Tube, high strength cannon, 897
Tube, pressure, through-wall crack, 830
Two-dimensional finite element code, 264
Two-parameter approach, 9

U
Ultrasonic pulse transmit-receiver method, 642
Upper shelf energy
Charpy, 40
Upper shelf temperature, 341

V
Variable amplitude fatigue crack growth, 727
Void nucleation law, 364
Void volume fraction, 201, 364

W
Waves
amplitude, 642
longitudinal, 642
Weibull stress, 135, 284, 315
Welded joints, 315
Weld fracture, 154
Weld material, ductile crack growth in, 851
Welds, resistance spot, 802
Weld strength mismatch, 315
Weld tests, multi-specimen, 862

Y
Yielding
localized, 584
reverse, 552, 565
Yield strength, 862
Yield stress, 426
Young's modulus, 393

Z
Zirconium, 830