Subject Index

A

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted compliance ratio technique</td>
<td>57, 79, 94, 106</td>
</tr>
<tr>
<td>Aluminum alloys</td>
<td>57, 128, 207</td>
</tr>
<tr>
<td>2024</td>
<td>14, 157, 379</td>
</tr>
<tr>
<td>2024-T351</td>
<td>246, 337, 379</td>
</tr>
<tr>
<td>2124</td>
<td>367</td>
</tr>
<tr>
<td>7050-T76</td>
<td>285</td>
</tr>
<tr>
<td>8009</td>
<td>157</td>
</tr>
<tr>
<td>titanium-aluminum-vanadium</td>
<td>94, 265</td>
</tr>
<tr>
<td>Amplitude loadings, variable</td>
<td>265, 337, 411</td>
</tr>
<tr>
<td>Applied load</td>
<td>41</td>
</tr>
<tr>
<td>Asperity</td>
<td>304</td>
</tr>
<tr>
<td>Asperity heights</td>
<td>367</td>
</tr>
<tr>
<td>ASTM standards</td>
<td>79, 94, 106, 321</td>
</tr>
<tr>
<td>Austenitic steel</td>
<td>191</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basquin-Morrow equation</td>
<td>351</td>
</tr>
<tr>
<td>Block load tests</td>
<td>14</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center crack specimen</td>
<td>57</td>
</tr>
<tr>
<td>Closure measurement</td>
<td>157</td>
</tr>
<tr>
<td>Compliance methods</td>
<td>14, 41</td>
</tr>
<tr>
<td>adjusted compliance ratio technique</td>
<td>57, 79, 94, 106</td>
</tr>
<tr>
<td>cut compliance technique</td>
<td>175</td>
</tr>
<tr>
<td>Compression</td>
<td>285</td>
</tr>
<tr>
<td>Compression loading</td>
<td>207</td>
</tr>
<tr>
<td>Compressive overstrain, periodic</td>
<td>304</td>
</tr>
<tr>
<td>Computer vision, measurement system development</td>
<td>145</td>
</tr>
<tr>
<td>Constant amplitude</td>
<td>224, 285</td>
</tr>
<tr>
<td>crack growth rates</td>
<td>246</td>
</tr>
<tr>
<td>cyclic bending</td>
<td>393</td>
</tr>
<tr>
<td>loading</td>
<td>411</td>
</tr>
<tr>
<td>straining</td>
<td>304</td>
</tr>
<tr>
<td>test</td>
<td>1</td>
</tr>
<tr>
<td>Constraint</td>
<td>128</td>
</tr>
<tr>
<td>Corrosion fatigue</td>
<td>459</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack closure</td>
<td>14, 57, 106, 207</td>
</tr>
<tr>
<td>behavior under variable amplitude loadings</td>
<td>265, 337, 411</td>
</tr>
<tr>
<td>concept</td>
<td>128</td>
</tr>
<tr>
<td>cut compliance technique</td>
<td>175</td>
</tr>
<tr>
<td>effects</td>
<td>94</td>
</tr>
<tr>
<td>effects on fatigue crack growth</td>
<td>224</td>
</tr>
<tr>
<td>fatigue measurement</td>
<td>321</td>
</tr>
<tr>
<td>load excursion effect on</td>
<td>246</td>
</tr>
<tr>
<td>measurement</td>
<td>41</td>
</tr>
<tr>
<td>overstrain effects</td>
<td>304</td>
</tr>
<tr>
<td>plasticity-induced</td>
<td>1, 106, 128, 351</td>
</tr>
<tr>
<td>plasticity-induced, prediction</td>
<td>427</td>
</tr>
<tr>
<td>roughness-induced</td>
<td>351</td>
</tr>
<tr>
<td>specimen thickness effect on</td>
<td>246</td>
</tr>
<tr>
<td>stresses</td>
<td>440</td>
</tr>
<tr>
<td>synergetic effects</td>
<td>379</td>
</tr>
<tr>
<td>Crack front propagation</td>
<td>157</td>
</tr>
<tr>
<td>Crack growth</td>
<td>427, 459</td>
</tr>
<tr>
<td>asymmetry, influence on geometric correction factor</td>
<td>379</td>
</tr>
<tr>
<td>behavior, nonflat crack surface effects on</td>
<td>367</td>
</tr>
<tr>
<td>notches</td>
<td>411</td>
</tr>
<tr>
<td>overload effects</td>
<td>191, 224</td>
</tr>
<tr>
<td>retardation</td>
<td>14</td>
</tr>
<tr>
<td>transgranular</td>
<td>265</td>
</tr>
<tr>
<td>rate</td>
<td>57, 106, 246, 351</td>
</tr>
<tr>
<td>rate, closure mechanisms effect on</td>
<td>224</td>
</tr>
<tr>
<td>rate under constant amplitude loading</td>
<td>411</td>
</tr>
<tr>
<td>rate under constant amplitude straining</td>
<td>304</td>
</tr>
<tr>
<td>rate under variable amplitude loadings</td>
<td>265, 411</td>
</tr>
<tr>
<td>Crack initiation</td>
<td>351</td>
</tr>
<tr>
<td>Crack nucleation model</td>
<td>351</td>
</tr>
<tr>
<td>Crack opening displacement</td>
<td>145</td>
</tr>
<tr>
<td>Crack opening load</td>
<td>14, 79, 106, 157</td>
</tr>
<tr>
<td>description using strip yield model</td>
<td>459</td>
</tr>
<tr>
<td>Crack opening stress</td>
<td>285, 367</td>
</tr>
<tr>
<td>Crack propagation methods</td>
<td>41, 57, 207</td>
</tr>
<tr>
<td>Crack tip closure</td>
<td>94</td>
</tr>
<tr>
<td>Crack tip displacement</td>
<td>157, 427</td>
</tr>
</tbody>
</table>

Copyright © 1999 by ASTM International www.astm.org
Crack tip opening displacement, 246, 367
Crack tip strain, 106
Crack tip stretch, 459
Cut compliance method, 175
Cyclic bending, constant amplitude, 393
Cyclic loading, 393, 411
 elastoplastic large deformation analysis, 440

D
Damage tolerance concepts, 246
Deformation, 41
 analysis, cyclic load elastoplastic, 440
 behavior, 106
 crack flanks, 1
Delay cycles, 379
Diffusion, stress-assisted, 440
Digital image correlation, 145
Digital imaging displacement system, 157
Discrete dislocation model, 1
Dislocation arrangement, 1
Displacement-based method, plasticity-induced
 crack closure prediction, 427
Displacements, sliding, nonflat fatigue cracks, 367
Dugdale-Barenblatt model, 285
Dugdale crack closure model, 128

E
Elastic-plastic finite element model, 106, 411
Elastic-plastic growth model, 411
ESACRACK software, 459

F
FASTRAN-II, 285
Fatigue crack model, 304
Fatigue crack growth model, 459
Fatigue life prediction methodology, 57
 comparison, 351
Fatigue life, total, 351
Fatigue loading, 321
Fatigue strength, 304
Fatigue threshold, 57
Finite element
 analyses, 411
 elastic-plastic, 106
 method, 157, 440
 model, 285, 321, 337, 427
Flaw shape evolution, 393
Forward inversion method, incremental, 175
Fractography, 224
Fracture surface asperity, 304
Fracture surface roughness, 265

H
Hi-Lo block loading, 337
Hydrogen-assisted cracking, 440
Hysteresis energy, cyclic, 128

J
Image acquisition, 145
Image analysis, 145
Initiation-propagation model, 351
J-integral, 411

L
Linear elastic fracture mechanics shape
 function, 427
Loading
 block, 337
 constant amplitude, 14, 265, 411
 cycle, 1
 cycle, loading/unloading, 145
 cycle, two-step, 265
 cyclic, 285, 393, 411
 cyclic, elastoplastic large deformation
 analysis, 440
 fatigue, 321
 frequency, 459
 variable, 337
Loads
 crack opening, 79
 displacement curves, 41, 79
 excursions, effect on crack closure
 measurements, 246
 interior opening, 157
 ratio, 14
 transfer, 57
 wave shape, 459

M
Mean stress, 157
Mesh size, 337
Metal fatigue, 427
Microscope, far field, 145
Models and modeling
 crack nucleation, 351
 discrete dislocation, 1
 Dugdale-Barenblatt's, 285
 Dugdale crack closure model, 128
 elastic-plastic, 411
elastic-plastic finite element, 106
fatigue crack, 304
fatigue crack growth, 459
finite element, 285, 321, 337, 427
Newman's crack-closure, 285
one-dimensional strip yield, 285
strip-yield, 321, 393, 459

N
NASGRO software, 459
Newman's crack closure, 285

O
Opening load measurement, 79
Overload, 285
effects, 207, 224, 246
effects on crack growth rate, 191
single, 337
single tensile, 191
tensile, 224

P
Paris law region, 94, 106, 128
Plane-strain conditions, 14
crack closure under, 1
Plane stress conditions, 337
Plastic damage, 128
Plastic deformation, 41, 285
residual, 191
Plasticity-induced crack closure, 246
aluminum alloy, 379
assessment, 128
characterization, 106, 393
control on crack opening point, 265
nonflat crack surfaces, 367
prediction method, 427
thickness effects on, 285
two-dimensional analytical model, 351
under plane-strain conditions, 1
Plastic zone size, 337
Potential drop method, 14

R
Residual plastic deformation, 191
Residual stress, 175, 207, 440
Roughness, fracture surface, 265
Roughness-induced crack closure, 351

S
Scanning electron microscope, 106, 224
Shear fatigue straining, 304
Shear lip, 379
Slope offset method
E 647, 79, 94, 106, 321
Specimen thickness, effect on crack closure
measurements, 246
Speckle pattern, random, 145
Steel, 128, 393
austenitic, 191
carbon, 321
Stereophotogrammetric reconstruction, 191
Strain, cutting effects on, 175
Strain intensity factor, 304
Strain rates, 459
Stress-assisted diffusion, 440
Stress intensity, 1, 246, 427
effective, 57
factor, 94, 128, 321, 379, 411
factor, crack propagation, 207
factor, due to residual stress, 175
factor, relative to small scale yielding, 440
range, cyclic, 157
range, effective, 41, 265
Stress level, influence on flaw shape evolution, 393
Stress ratio, 57, 128
negative, 321
Stress redistribution, 57
Stress, residual, 175
Stress-strain parameters, 440
Striation formation, 14
Striation spacing, 191
Strip-yield model, 321, 393, 459
one-dimensional, 285
Surface flaw shape evolution, 393

T
Tensile overload, 224
single, 191
Tensile stresses, 367
Thickness, effect on plasticity-induced fatigue
crack closure, 285
Titanium alloy, 224, 367
titanium-aluminum-vanadium, 265
titanium-aluminum-vanadium forgings, 94
Transient loading, 224

U
Underload, 224, 246

Y
Yield strength, 427