### Subject Index

**A**
- Aging, effect on $\sigma$-phase formation, 80
- Alloy parameters, low activation austenitic stainless steels, 30
- Alumina, diffusion bonding with vanadium alloys, 219
- Austenite-stable alloys, 7
- Austenitic stainless steels
  - Fe-Cr-Mn, see Fe-Cr-Mn austenitic stainless steels
  - high manganese, mechanical properties, 47
  - low activation, 30, 80
  - reduced activation, 7
- Bend test, diffusion bond between vanadium alloys and alumina, 219
- Boron, vanadium alloys, 179
  - binary alloys, 210

**B**
- Bainitic alloys, containing vanadium, 113
- Charpy impact tests, low activation ferritic alloys, 113
- Chemical compatibility, vanadium alloys and silicon carbide, 236
- Chromium
  - effects in vanadium-binary alloys, 210
  - low, reduced-activation ferritic steels, 140
- Chromium-molybdenum steels, 140
- Chromium-tungsten steels, 140
- Cold work, effect on $\sigma$-phase formation, 80
- Creep rupture strength, reduced activation ferritic steels, 130

**C**
- Carbon, effects in vanadium-binary alloys, 210
- Charpy impact tests, low activation ferritic alloys, 113
- Chemical compatibility, vanadium alloys and silicon carbide, 236
- Chromium
  - effects in vanadium-binary alloys, 210
  - low, reduced-activation ferritic steels, 140
- Dislocation loops, vanadium alloys, 199
- Ductile-brittle transition temperature, reduced activation ferritic steels, 130
- Ductility, hydrogen effects, Fe-Cr-Mn austenitic stainless steels, 103
- EB welding, low-activation vanadium-binary alloys, 210
- Equilibrium diagram, Fe-Cr-Mn ternary system, 80
- Fast reactor irradiation, Fe-Cr-Mn austenitic stainless steels, 19
- Fe-Cr-Mn austenitic stainless steels, 19
  - composition and phase effects on segregation, 93
  - ductility, hydrogen effect, 103
  - $\sigma$-phase formation, 80
  - precipitation sensitivity, 56
- Fe-Cr-Mn-Ni-C-N, low activation austenitic steels, 30
- Fe-Cr-Mn-Ni steels, 19
- Fe-Mn-Cr-C system, 7
- $\delta$-Ferrite, 7
- Fracture mode, vanadium-binary alloys, 210

**D**
- d-electron concept, low activation austenitic stainless steels, 30
- Diffusion bonding, between vanadium and alumina, 219

Copyright© 1990 by ASTM International | www.astm.org
L–M
Loop nucleation, vanadium alloys, 199
Low activation, see Reduced activation
Manganese-stabilized stainless steels, 7
Martensite, 7
Martensitic steels, low activation, 113
MC precipitation, Fe-Cr-Mn austenitic stainless steels, 56
Mechanical properties
ferritic steels, 47
high manganese steels, 47
Metal/ceramic interface, 219
Micro Knoop indentation technique, 219
Microstructure
ferritic alloys, 113
low chromium reduced-activation, 140
vanadium alloys, 161, 190
high-voltage electron microscope, 199
Molecular orbital calculations, low activation austenitic stainless steels, 30

N–O
Nuclear transmutation effect, Fe-Cr-Mn austenitic stainless steels, 103
Oxidation resistance, vanadium alloys, 236

P
Phase stability
austenitic stainless steels
Fe-Cr-Mn, 19
low activation, 30
ferritic alloys, low activation, 113, 130
Phase transformation, Fe-Cr-Mn austenitic stainless steels, 93
Precipitation
radiation-induced, vanadium alloys, 190
sensitivity, Fe-Cr-Mn austenitic stainless steels, 56

R
Radiation-resistance, Fe-Cr-Mn austenitic stainless steels, 56
Recrystallization, Fe-Cr-Mn austenitic stainless steels, 56
Reduced activation
austenitic stainless steels, 7, 80
Fe-Cr-Mn, 56
ferritic steels
irradiation effects, 113
low chromium, 140
optimization, 130
materials, 47
vanadium alloys, 161, 179
binary alloys, EB welding, 210

V
Vacancy migration energy, vanadium alloys, 199
Vanadium alloys
boron doping, 179
defect behavior, high-voltage electron microscope, 199
diffusion bonding with alumina, 219
dislocation loops, 199
helium embrittlement, 161
internal carbides, 237
irradiation hardening, 161
low activation, 161, 179
EB welding, 210
microstructure, 161, 179, 190
high-voltage electron microscope, 199
precipitation, radiation-induced, 190
segregation, radiation-induced, 190
solid state reactions with silicon carbide, 236
tensile properties, 161
void formation, 190
void swelling, 161, 179
Vanadium-boron alloys, 210
Vanadium-carbon alloys, 210
Vanadium-chromium alloys, 210
Void formation, vanadium alloys, 190
Void swelling
  austenitic stainless steels
    Fe-Cr-Mn, 19
    low activation, 30
  ferritic alloys, low activation, 113

vanadium alloys, 161, 179

W–Y
Work hardening coefficient, Fe-Cr-Mn
  austenitic stainless steels, 103
Yield strength, vanadium-binary alloys, 210