Subject Index

A

ABAQUS program, 246-249
A derivation, 14-17
Alloys
chemical composition, 239
surface crack testing of cylindrical rods, 383-388
threshold testing, 305-306
Almond-shaped crack
bending loading coefficients, 375
stress-intensity factor coefficient, 366, 368-372
tension loading coefficients, 374
Alternating-current (A-C) field measurement
schematic, 355-356
tubular threaded connections, 348-363
Alternating-current (A-C) potential drop (ACPD)
crack initiation and growth measurement, 242-246
test specimen and apparatus, 238-242
thermal fatigue histories, 246-249
thermal fatigue testing, 237-258
weldment surface crack analysis, 403-404
Aluminum alloys
fractographic analysis, 340, 342-344
subcritical surface flaw growth, 334-336
surface flaw analysis, 216-236
Anisotropic alloys, 237-238
Antisymmetric loading, 13-14
Aspect ratio, 360-361
ASTM Standards
A 572, 295
A 710, 154
E 399-81, 291
ASTM Test Methods
E 1152, 325
E 647-86A, 304
Asymptotic technique
eigenfunction expansion, 66-67
HRR dominance in tensile-loaded surface cracks, 23-24
Average crack growth rate, 256-258
B

Beach marks, 383, 385
Bending
almond-shaped cracks, 375
notched bar almond-shaped cracks, 380
notched bar sickle-shaped cracks, 382
sickle-shaped cracks, 377
uncracked notched bar, 378
Block loading sequences
crack growth retardation, 265-266
surface flaw geometries, 262-264
Boundary correction factors, 41-46
Boundary-layer effect
finite-element models and methods, 37-40
stress-intensity factors, 94-96
C

Center of rotation, 168-170
Charpy-V notch testing
crack-tip opening displacement values, 154-155
impact toughness, 142-150
Circumferentially cracked pipe, 21-22
Closure loads
effective stress-intensity factors, 272-277
surface flaw geometry, 268-272
Compact-type (CT) specimens
fatigue crack growth rates, 278-279
subcritical surface flaw growth, 333-346
surface crack growth computations, 287-302
surface flaw analysis, 215-236
Complementary metal-oxide semiconductor (CMOS) switches, 244-246
Complex load, corner crack stress-intensity factors, 53-56
Composite laminates
near-surface layer failure, 186–189
properties, 210–211
surface cracks, 177–193
Condensation technique, stress-intensity
analysis, 69–70
Constraint parameter
constraint parameter
internal pressure and thermal shock, 323,
three-dimensional crack bodies, 323–324
Continuum analysis, 21–22
Convergence, 82–83
Coordinate system
fracture analysis, 64–66
in-plane displacement measurement in
PVC pipe, 137–138
Corner crack
schematic, 49–50
stress-intensity factors, 49–61
two-degree-of-freedom, 50–51
Corner singularities, 13–14
Correction factors
stress-intensity solutions, 226–227
surface flaws, 180, 185–186
tubular threaded connections, 359–360
Crack aspect ratio, 265–268
Crack border-free surface intersection
effects, 99–108
Crack closure/opening loads, 268–273
Crack closure threshold testing, 303–314
Crack geometry, 383–388
Crack growth
crack-tip opening displacement values,
162–163
dC/dN calculation, 219–220
predictions, 279–285, 373–383
surface crack testing of cylindrical rods,
383–388
thermal fatigue testing, 237–258, 242–
246
Crack half length calculation, 288–290
Crack initiation, 237–258
Crack-mouth opening displacement
(CMOD)
load history and closure, 305–306
surface flaw analysis, 112, 117–120
Crack shape
almond and sickle-shaped, 365–366
crack front constraint variation, 323–
324
fatigue loading, 319–323
prediction, 373–383
stress-intensity factors, 40–46
Crack size, 40–46
Crack-tip-opening angle (CTOA), 3–4,
152–176
Crack-tip opening displacement (COD)
effective stress-intensity factors, 272–277
measurement, 3–4, 152–176
surface flaw geometries, 264–265
testing parameters, 298–302
values, 162–163
Critical conditions, failure assessment, 316–
317
Curvilinear coordinates, 64–66
Cylindrical bars, surface crack growth, 365–
388

Damage size measurements, 198–200
Damage size predictions, 199–203
Delamination growth, 186–189
Deply tests, filament wound cases, 198
Depth crack growth rate (da/dN), 231–232
Dimensionless displacement solution, 68–
69
Dimensionless stress-intensity factors, 73–
74
Direct current (D-C) potential drop, 243–
244
Domain integrals, 14–17
Double-beam illumination technique, 137–
139
Double-edge wedge specimen, 247–248
Double-exposure holography, 138–139
Dynamic loading, 142–150

Edge stress-intensity factor, 86–96
Effective stress distribution, 123, 125, 127
Eigenfunction expansion, 66–69
Eigenvalues
algorithm for linear-elastic fracture
mechanics, 103
in-plane displacement measurement,
133–134
least-squares in-plane displacement
measurement, 139
semi-elliptical surface crack analysis, 84–
85
Elastic behavior
crack-tip opening displacement, 152–176
surface crack analysis, 9–30
thermal fatigue testing, 246–253
Elastic-plastic analysis
crack-tip opening displacement values,
152–176
rapidly-loaded surface crack specimens, 142–150
surface crack review, 9–30
thermal fatigue testing, 246–253
Elastic stress fields, 77–97
Electro-discharge machining (EDM), 217–218
Elliptical cracks
 composite laminates, 177–193
 orthotropic media, 178–180
 stress-intensity factors, in orthotropic medium, 190–193
 weight function, 353–354
Embedded elliptical crack geometry, 226–227
Energy release rate, 367
Equilibrium equations, 65–66
Equivalent surface crack, 198–203
Exact solutions behavior, 78–81

Failure assessment
 calculation programs, 316–317
 valve casing, 317–319
Fatigue crack closure, 260–285
Fatigue crack growth
 aluminum plate surface flaw analysis, 217–218
 computations and experiments, 3–4, 287–302
 crack length, 338–339, 345–346
 failure assessment, 316
 maximum crack versus number of cycles, 357–360
 plates, 215–236
 predictability, 278–285
 subcritical surface flaw growth, 333–339, 346
 three-dimensional surface flaw geometries, 260–285
 threshold tests, 303–314
Fatigue crack initiation, 340–341
Fatigue loading, 319–323
Fatigue testing
 subcritical surface flaw growth, 334–336
 surface crack growth, 315–331
 tubular threaded connections, 348–363
 vinyl acetate monomer (VAM) joints, 354–360
Fiber damage, 198–200
Filament-wound cases (FWC)
 damage size and prediction tests, 199–203
 deploy tests, 198
 impact testing, 195–211
 residual strength tests, 197–198
Finite-element analysis
 convergence properties of p-version, 82–83
 correction factor, 185
 crack-tip opening displacement values, 171–172
HRR dominance in tensile-loaded surface cracks, 23–24
plastically deformed surface flaw, 112–128
p-version, 81–82
slice synthesis, 225
special computations, 290–291
stress-intensity factors, 57–58
surface flaw, 34–47, 112–128
thermal fatigue testing, 237–258
three-dimensional, 36–40, 122–128
Finite-element mesh
 stress-intensity factors, 70–71
 tubular threaded connections, 351–352
First-ligament failure, 204–205
Flat plate weight function, 399, 402, 410
Flow theory of plasticity, 19–20
Fluidized bed technique, 237–238
Fractography, 339–344
Fracture analysis
 dimensionless stress-intensity factors, 70–74
 eigenfunction expansion, 67–69
 finite-element mesh and special element, 70
 governing equations in curvilinear coordinates, 64–66
 monotonic loading, 329–330
 rapidly loaded surface-cracked specimens, 142–150
 stress-intensity factors in surface cracks, 69–74
 three-dimensional bodies with surface crack, 63–76
Fracture mechanics
 composite laminates, 177–193
 linear-elastic, 10–14
 near-surface layer failure, 186–189
 optical stress analysis, 99–110
 prediction for rapidly-loaded surface crack specimens, 142–150
 semi-elliptical surface crack analysis, 77–97
 three-dimensional geometries, 260–285
Fracture resistance curves, 323–324
Free surface-crack border intersection, 134
Frozen stress algorithm, 102
Frozen stress analysis, 108–110
Garwood J-integral equation, 326–328
Geometry
 failure assessment, 316
tubular threaded connections, 350–351
Goursat-Kolosov stress functions, 131–134
Graphite/epoxy composite
 constituent properties, 210
 impact damage, 194–211
 physical properties, 210
 strength predictions, 204–209

Garwood method, 326–328
 rapidly loaded surface-cracked specimens, 142–150
Read method, 327
 surface crack growth computations, 20–22, 287–302
 surface flaw analysis, 112, 117–122
J-R curve
 geometry and instrumentation, 326
 J curve comparison, 329–331
 monotonic increasing load, 323–331
 J resistance curve, J-R curve comparison,
 329–331

Hertz's law, 195
Holes, surface and corner cracks, 35
Holographic interferometry, 130–140
Homogenization assumption, 178–193
Hooke's law, 65–66
HRR dominance, 171–172
Hybrid analogue-finite-element model, 360–361
Hybrid stress analysis, 350–351
Hydrostatic stress, 321–323

“Ill-shaped” elements, 37–38
Impact damage
 equivalent surface crack, 198–203
 filament-wound cases, 196–197
 strength predictions, 208–209
 surface crack analysis, 194–211
Incompressibility, 86–94
Indent notch, 333–346
Induction heating, thermal fatigue crack, 237–258
Initiation-fracture testing
 smooth and indent notch, 340–341
 subcritical surface flaw growth, 336–338
 in-plane displacements, 130–140
 Interferometric displacement gage (IDG), 305
Inverse square-root singularity, 133–134
Irwin stress-intensity solution, 223–225
Isotropic alloys, thermal fatigue testing, 237–238

J

\(J_{\text{en}} \) value, 146–150
\(J \)-integral
 crack-tip opening displacement values, 152–176

Magnification factors, 92–93
Maximum strain criterion, 205
Maxwell-Betti reciprocity theorem, 83–84
Metallographic slicing, 157, 162
Microcrack initiation, 254–257
Microtopographic techniques, 157–161, 163–167
Moiré interferometry
 in-plane displacement measurement, 134–137
INDEXES

optical analysis, 110
surface flaw analysis, 113–114
Monotonic loading
models and experiments, 2–3
surface crack growth, 315–331
Motor cases, impact damage analysis, 195–211
M(T) crack specimens, 295–296

Near free surface effects, 30
Near-surface layer failure, 186–189
Near-threshold crack growth behavior, 303–314
Near-tip problem geometry and notation, 100–101
Newman-Raju solution
crack-tip opening displacement values, 169–172
fatigue crack growth rate prediction, 280–282
stress-intensity analysis, 225–226
Newton interferometry, 260–285
Newton-Raphson minimization, 292–293
Nodal-force method, 38–40
Nondimensional stress-intensity factors, 54–61
Nonsingular effect, linear elastic fracture mechanics, 103–104
Notched rods, surface crack growth, 365–388
Notches
subcritical surface flaw growth, 333–346
size, stress-intensity factors, 40–46
Numerical differentiation, 117

Optical analysis
free-surface effects on cracks, 99–110
frozen stress analysis, 108–110
plastically deformed surface flaw, 112–128
Optical spatial filtering, 113–115
Optimization, special computations, 291–295
Orthotropic media
elliptic cracks, 178–180
stress-intensity factors, 190–193

Paris equations
failure assessment, 316
fatigue crack growth rate prediction, 282–284
surface flaw crack growth, 229
tubular threaded connections, 357–358
unnotched rods, 383–384
weldment surface crack analysis, 408–411
Partially embedded ellipse, 230–231
Part-through cracks
fracture behavior predictions, 146–148
line-spring analysis, 17–21
orthotropic media, 179–180
Phase-locked loop (PLL) system, 244–246
Plasticity, surface flaw analysis, 112–128
Plates
dimensionless stress-intensity factors, 73
surface and corner cracks, 35, 215–236
PMMA polymer surface crack growth geometries, 260–285
Poisson's ratio
eigenvalues, 84–85
magnification factor, 92
semi-elliptical surface crack analysis, 78
Polynomial coefficients, 225–226
Potential drop technique, 243–244
Power-law deformation theory, 19–20
Power spectrum density function, 403–404
Pressure vessels, 287–302
p-version finite element method
convergence properties, 82–83
reliability, 96–97

R
Raju-Newman solution
surface and depth crack growth rate curves, 232
surface crack shape change, 234–235
Read J-integral equation, 327
Refined polariscope schematic, 109
Remaining-ligament strength criterion, 205
Residual tensile strength
filament-wound cases, 197–198
graphite/epoxy composite, 194–211
Root-mean-square relations, 52

S
Scanning electron microscopy, 334–346
Semicircular crack fronts, 25–29
Semicircular edge notch, 40–46
Semi-elliptical cracks
composite laminates, 177–193
correlation properties, 82–83
eigenvalue determination, 84
exact solutions behavior, 78–81
finite-element mesh models, 90–96
HRR dominance, 25–29
Semi-elliptical cracks—continued
model problem, 84–90
numerical solutions, 77–97
p-version of finite-element method, 81–82
stress-intensity factors, 41–46, 83–84
surface flaw shape characterization, 229–231
T-butt welded joints, 392–399
weight function stress-intensity factor, 354
welded joints, 390–412
Sickle-shaped cracks
bending loading, 377
stress-intensity factor coefficients, 366, 368–373
tension loading, 376
Simplified models, surface crack analysis, 17–22
Single-edge notch bend (SEB)
deep cracked, 144–148
shallow cracked, 145–148
Single-edge notched (SEN), 18–19
Singular integral, finite-element hybrid (SIFEH), 12
linear-elastic fracture mechanics, 11–13
Slice synthesis technique
corner crack stress-intensity factors, 56–59
finite-element model, 225
stress-intensity factors, 56–59
Society of Experimental Stress Analysis consensus solution, 226–228
Special element properties, finite-element mesh and, 70–71
Specimen geometry
surface flaw analysis, 113–114, 116
thermal fatigue testing, 238–239
Specimen-to-structure correlations, 287–302
Square-root singularity, 79–81
Strength predictions, 208–209
Stress analysis
surface crack, 2
tubular threaded connections, 348–363
Stress distribution, 349–353
Stress gradients, 49–61
Stress-intensity factor calculations, 52–53
circular crack, 180–181
closure-load data, 272–277
computations and experiments, 287–302
contour integral calculation, 83–84
corner cracks, 49–61
distribution, 107–108
Surface flaw, 112–128
correction factors, 180, 185–186
CT crack growth rate data, 231–232
growth predictions, 232–235
plates, 215–236
shape and growth rate at depth \((da/dN)\), 220–223
subcritical growth, 333–346
shape characterization, 229–231
size and subcritical growth, 333–346
three-dimensional geometries, 260–285
threshold testing of crack closure and load, 303–314
Surface layer failure, 186–189
Surface stress distribution, 349–351

T
T-butt welded joint
edge crack, 394–395
semi-elliptical surface cracks, 392–399
Tensile-loaded surface cracks, 22–29
Tension loading
almond-shaped cracks, 374
notched bar almond-shaped cracks, 379
notched bar sickle-shaped cracks, 381
plastically deformed surface flaw, 112–128
sickle-shaped cracks, 376
surface cracks in cylindrical rods, 370–372
uncracked notched bar, 378
Thermal fatigue testing, 237–258
Thick-shell isoparametric elements, 69–70
Threaded connections, surface cracks, 348–363
Three-dimensional crack problems
computations and experiments, 287–302
evaluation of, 37–40
fracture analysis, 63–76
geometries, 260–285
singular integral formulations, 12
stress-intensity factor, 36–37
surface flaws, 12, 36–40, 112
Threshold testing, fatigue crack growth, 303–314
Through-thickness stress distribution, 352–353
"Thumbnail" cracks, 100–106
Transition crack length, subcritical surface flaw growth, 333–346

Tri-axiality factor, crack front constraint variation, 323
Tubular threaded connections, 348–363
Turner's Engineering J approach, 146–147
Two-part failure
elliptic and semi-elliptic flaws, 178
medium-depth flaws, 189

U
Unnotched rods, surface crack growth, 365–388

V
Valve casing failure assessment, 317–320
Variable-amplitude stress history, 405–408
Variable eigenvalue algorithm, 100
Variable loading history, 390–412
Vertex-edge intensity factor, 88–96
Vertex intensity factor, 86–90
Vinyl acetate monomer (VAM) joints, 354–360
Virtual-crack-closure technique (VCCT), 38–40
Virtual crack extension, 14–17
Virtual grating schematic, 110
Von Mises' stress, crack front constraint variation, 321–323

W
Weighted average stress range, 405–408
Weight function
corner crack, 49–52
edge crack, 394–395, 397–398
flat plate, 399, 402, 410
notched and unnotched rods, 365–388
semi-elliptical surface crack, 398–399
stress-intensity factors, 58–59, 365–368
tubular threaded connections, 348–363
welded joints, 390–412
Weld angle, stress-intensity factor, 400
Weldments, surface fatigue cracks, 390–412
Weld toe radius, stress-intensity factor, 401
Westergaard approach, in-plane displacement measurement, 130–134
Width correction, stress-intensity solutions, 226–228
Wien bridge oscillator, thermal fatigue testing, 244–245