Subject Index

A
Alloy steels, 83, 120, 134, 195
Anvils, 7, 35, 67
Artificial defects, 7
ASTM standards
 indirect calibrations, 7, 35
 loading parameters, 120, 134
 metrological techniques, 20
 reference type, 35, 94
 sensitivity, 7, 142
 slow bending, 142
 International standardization, 20

B
Bending deformation, 67, 179
Broached notches, 83

C
Clinometer, 20

D
Ductile-to-brittle transition, 134, 179
Dynamic tear, 134

E
Energy determinations, 7, 35, 54

F
Finite element analysis, 179
Fracture toughness evaluations, 142

G
Ground notches, 83

H

I
Impact tester
 compliance measurements, 7
data accuracy, 54, 94
dimensional parameters, 35, 54
direct calibrations, 7, 20, 35

K
Kruskal-Wallis test, 142

L
Lateral expansion, 83, 120

N
National Standards Institute, 1
National Standardization, 20
Notch parameters (see also Impact tester)
 acuity, 134
 fabrication methods, 83, 94, 142
 loading, 120, 134
 microstructural deformation, 83, 179
 physical characteristics, 83
 Nuclear reactor testing, 54

P
Pendulums
 absorbed energy, 67
 characteristics, 7, 20
description, 1
elevation, 20
 friction loss, 20, 67
 load system, 7
 oscillation period, 20
 rod angle, 20
 striking edge radius, 67
Photomicrographs, 94
CHARPY IMPACT TEST: FACTORS AND VARIABLES

R
Regulatory requirements, 54
Research programs, 1
Resilience analysis, 35

S
Scientific evaluations, 54
Slip line field theory, 179
Specimen parameters
absorbed energy, 83, 120, 142
bending characteristics, 35, 67
conditioning media analysis, 195
defformation pattern, 179
electronic control systems, 7
loading rate, 120, 134
materials specification, 20, 142
stress rate, 134, 142, 179
type, 1
Specimen types
aluminum, 142
fatigue pre-cracked, 120, 134, 142
high energy, 83
irradiated, 54, 179
low energy, 83
steel, 142, 179 (see also Alloy steels)
titanium, 142
unirradiated, 54
v-notched, 83, 120, 134, 195
Standardization overview, 1
Steel product testing, 54, 83
Striker abrasion, 67

T
Testing techniques, 1
Testing temperature parameters, 83, 179
Transition temperature variables, 54, 120, 134, 195

U
Upper shelf energy level, 179