Subject Index

A
Aircraft component defects, using quantitative fractography, 52, 61
Airframes, 144
Aluminum alloys, 52, 144
Aluminum, 2024, composition, 27 (table)
ASTM test method E 813-86: 74, 76

B
Brittle fracture in weldments, 102
Brittle systems, 4

C
Chemical composition of pressure vessel steels, 90 (table)
Cleavage fracture
 in nuclear pressure vessel steels, 89
 in weldments, 102
Computed tomography, 3
Corrosion fatigue, 144
Crack formation and growth, 123
Crack growth
 aircraft components, 53–54, 58
 hydrogen-assisted cracking, 69
 in aluminum alloys, 146–153
 mean stress/strain, 123
Cracking, hydrogen-assisted, 69
Crack orientation, 123, 144
Crack propagation, 3
Crack tip blocking, 144
Critical strain energy density, 26

D
Damage detection, 3
Damage, shear type, 123
Defects, 52
Deformation, 3
Diffusion of hydrogen
Durability of aluminum alloys, 144

E
Experimental techniques, fractography, 4

F
Failure analysis, 3, 26, 52–54
Fatigue
 crack propagation, 52, 144
 multiaxial, 123
 striations, 52
 thresholds, 144
Fractals, 39
Fractography
 analysis of aircraft defects, 52
 application to materials processes, 3
 brittle fracture in weldments, 102
 corrosion fatigue, 144
 hydrogen-assisted cracking, 69
 nuclear pressure vessel steels, 89
 quantitative analysis using fractals, 39
 relationship to material toughness, 26
 weld metals, 89
Fracture
 analysis, 52
 mechanics, 52, 102, 144
 surfaces, 3–5, 39
 toughness, 69, 89
 transition, 89

H
Heat-affected zone, 102
Holding load and fractographic (HLF) test method, 72–74
Hydrogen-assisted cracking measurement, test methods, 69–72
Hydrogen embrittlement, 144
HY–100 steel composition, 26 (table)

Material toughness, 26
Mean stress, 123
Mechanical properties of materials, 39, 42 (table)
Micromechanical behavior, 26
Microstructures
brittle fracture in weldments, 102
effects on fracture behavior, 39
Military aircraft fracture analysis, 53
Mode of fracture, 69
Monotonic loading, 26
Multiaxial fatigue loadings, 123

Nuclear reactor vessels, 89

Optical microscopy, 57, 102

Pressure vessel steel, chemical composition, 89, 90 (table)

Quantitative fractography, 4–5, 39, 52
Quasi-cleavage, 69

Roughness, 3, 39

Scanning electron microscope, 52–53, 57, 102
Shear type damage, 123
Silicate particles in weld metals, 97 (table)
Steel
brittle fracture in weldments, 102
mechanical properties, 127 (table)
Steel, HT–100, composition, 27 (table)
Stereology, 3
Strain energy density, 26
Stress/strain, 123
Surface roughness, 4

Threshold stress intensity, 69
Tomography, 3
Toughness, 26, 102
Transmission electron microscope, 52

Weldments
brittle fracture, 102
Weld metals
brittle fracture, 102
fractographic study in nuclear pressure vessels, 89
silicate particles, 97 (table)