Subject Index

A

Ada, 211
Amplitude loading, 113
Analog-to-digital converter, 7
ASME Boiler and Pressure Vessel Code Case N-47, 38
ASTM Standards
D 1141-75, 124
D 3039-76(1982), 22
E 23-88, 88, 89
E 184-79, 88
E 399-83, 56, 81
E 646-78, 195, 200
E 647-83, 121, 123, 125
E 647-88, 56, 81, 102, 237, 244
E 647-88a, 134
E 813-81, 199, 260
E 813-87, 56, 153, 156, 260
E 1049-85, 116
STP 613, 1
STP 877, 1
Automated ball indentation testing, 188
Automated data acquisition for composite materials testing, 21
Automated digital analysis technique, 133
Automated fatigue and fracture laboratory schematic, 234
Automated fatigue crack growth testing, 113
Automated materials testing, 52, 178
Automated test system for fatigue and fracture testing, 1, 7, 23
Automated testing, 232
Automated thermomechanical fatigue testing, 38
Automated variable-amplitude, 167
Automatic test control, 52
Automation computer-controlled systems, 7
data acquisition and control, 269
electric potential drop, 143
European high temperature materials databank, 250
high-temperature crack growth, 178
microprocessor-based controller, 68
multitasking minicomputer work station, 52
PC-based data acquisition, 21
semiautomated system, 83
single host computer system, 232
software, 95, 211
variable amplitude, 167
Axial-torsional fatigue, 269

C

Charpy specimens test methods, 83
Clip gage, 7
Closure, 113
Complementary metal oxide semiconductor, 7
Compliance, 7, 113, 167
Composite materials, 21
Compression tests, 38
Computer and software technology in materials testing systems, 1
Computer control, 52, 95
Computer control—automation software, 211
Computer control for simulation of mechanical and environmental conditions, 113
Computer control program for axial-torsional fatigue testing, 269
Computer controlled fatigue testing, 7
Computer feedback control, 178
Computer programs, 83
Computers, fatigue (materials) testing, 7, 38
Constant-amplitude loading, 232
Corrosion fatigue, 113
Control program, axial-torsional fatigue testing, 269
Crack growth testing
 computer controlled system, 7
databank, 250
digital image analysis, 133
electrical potential drop, 143
simulation of mechanical and environmental conditions, 113
single host computer system, 232
Crack length, 133
Creep crack growth, 178
Creep fatigue, 38
Creep (materials), 250
Cyclic loading, 188

D
Data acquisition
 automation software, 211
 European high temperature materials databank, 250
 multitasking minicomputer workstation, 52
 PC-based, 21, 23
Data acquisition for axial-torsional fatigue testing, 269
Data acquisition—system software, 26
Database, 211
dc-potential, 7
Deformation testing, 38, 211
Digital image analysis, 133
Direct measurement, 133
Dynamic impact testing system, 83

E
Elastic-plastic fracture mechanics, 8, 143
Electric potential drop, 143, 167
Elevated temperature fatigue, 38, 133
Environmental exposure, 113
European high temperature materials databank, 250

F
Failure, 188, 269
FALSTAFF, 167
Fatigue and fracture mechanics databank, 250
Fatigue behavior of materials—data acquisition, 269
Fatigue crack growth
 automated variable-amplitude, 167
fracture mechanics test automation system, 95
measurement using digital analysis, 133
simulation of mechanical and environmental conditions, 113
Fatigue data acquisition, 269
Fatigue life, 113
Fatigue life prediction models, 269
Fatigue materials, 52, 250
Fatigue testing
 automated ball indentation, 188
 automated variable-amplitude, 167
 automation software, 211
 crack growth, 113, 133
 European high temperature materials databank, 250
 fracture mechanics test automation, 95
 high-temperature crack growth, 178
 microprocessor-based controller, 68
 multitasking minicomputer workstation, 52
 PC-based data acquisition, 21
 semiautomated testing system, 83
 single host computer system, 232
 thermomechanical, 38
Fatigue testing, computer-controlled, 7
Field apparatus, 188
Field indentation microprobe apparatus for nondestructive testing, 188
process flow chart, 191
schematic, 190
Flow properties, 188
Fracture mechanics, 95, 250
Fracture testing
 automated ball indentation, 188
 automated variable-amplitude, 167
 automation software, 211
 axial-torsional fatigue, 269
 computer-controlled, 7
 crack growth, 113, 133
data acquisition and control, 269
digital image analysis, 133
European high temperature materials databank, 250
fracture mechanics test automation system, 95
high-temperature crack growth, 178
microprocessor-based controller, 68
multitasking minicomputer workstation, 52
PC-based data acquisition, 21
semiautomated testing system, 83
single host computer system, 232
thermomechanical, 38
Fracture toughness, 52, 188

H
Heat affected zone, 188
High temperature
 compression tests, 38
 fracture, 178
 tension tests, 38
High temperature crack growth experiments
 schematic of automated testing system, 180
High temperature materials databank, 250
Hysteresis loops, 269

I
Image transmission, 133
In-phase test, 269
Intelligent mechanical test controller
 (IMTC), 68–82
In situ testing, 188
Interface, 7
Irradiated materials, 83
Irradiated steels, 188
Isothermal deformation tests, 38
Isothermal fatigue, 211

J
J-integral, 7
J-R curve, 7, 143

L
Laboratory fatigue tests, 38

M
Material testing, 250
Materials behavior research
 automation software, 211
Materials databank, 250
Materials testing laboratory
 automation software, 211
Materials testing systems
 computer and software technology, 1, 7, 95, 178
Measurement applications
 desk-top computer, 178

Mechanical response of composite materials to loading variety, 21
Mechanical test language, 68
Mechanical testing, 95, 143, 188
Metallic materials
 fracture toughness testing, 188
Microprocessor-based controller
 for fatigue testing, 68
 schematic, 72
Multiaxial stress and strain—data acquisition, 269
Multichannel test controller, 7
Multiple isothermal deformation tests, 38
Multitasking, 269
Multitasking minicomputer workstation
 materials testing laboratory, 211
 schematic, 55
SUN workstation computer, 52
 versus microcomputer (PC), 53

N
Networking, 211
Nondestructive testing, 188

O
ORNL (Oak Ridge National Laboratory)
 computer-controlled fatigue and fracture testing systems, 9
Out-of-phase test, 269

P
Partial unloading, 188
PASCAL, 211
Personal computer, 21
Petten—European high temperature materials databank, 250
Photo-isolation, 7

R
Radiation-induced embrittlement
 nondestructive testing apparatus, 188
Real-time control, 52

S
Semiautomated systems
 design, 84
 for dynamic impact testing, 83
Servohydraulic loadframe, 68
Single host computer system, 232
Software development, 269
Software portability, 211
Software technology
 for automated fatigue and fracture laboratory, 232
 for materials testing laboratory, 211
Spectrum fatigue testing, 113
Spectrum loading, 232
Spherical indenter, 188
Stainless steel, 38
Standardization, 250
Strain-controlled LCF data, 38
Stress and strain—data acquisition, 269
System verification, 21

T
Tension tests, 38
Test automation, 68, 95
Test controller, 7
Test equipment, 52
Testing systems
 computer technology, 1
 schematic diagram, 43
Thermomechanical fatigue, 38, 211
Thesaurus—European high temperature materials databank, 250
Toughness testing
 automated system, 7
 using a multitasking minicomputer workstation, 52

U
Uniaxial fatigue, 211

V
Variable amplitude, 167

W
Waveform data acquisition strategies, 211
Welds, 188

Y
Yield strength, 188