Subject Index

A
Anisotropy, 19

B
Bearing capacity, 47, 172
Bottom-feed method, dry, 131
Brick-lined tunnel, 266
Building foundation
performance, prediction, 172
Building sites, filled, 212
Bulkheads, 279

C
Cavity expansion, 248
Cement mixing method, deep, 224
Centrifuge, 224
model test, 47
Chemical injection, deep, 266
Clay soils, 19, 32, 73, 185, 248
soft, 47
Coal waste, 116
Column/soil stress ratios, 148
Compaction
deep, 279
deep soil, 297
dynamic, 199
grouting, 234, 248
piles, sand, 4, 32, 47
vibratory
marine, 279
probe, 320
sand pile, 32
soil, 297
stone columns, 62, 85, 116, 185, 212,
technique comparison, 4
Compressibility, 297
Cone penetrometer testing, 172
Construction, compaction piles, 4
Culm, 116

D
Densification, sand, 4, 32, 248, 297, 320
Density, relative, 234
Design
cement mix, deep, 224
compaction technique,
resonant, 297
lateral static densification, 248
sand compaction pile, 4, 32
stone columns, 62, 116, 131, 148, 172, 185
Direct transmission seismic
testing, 234
Displacement, vibro, 131
Dynamic compaction, 199

E
Earthquakes, 224, 234, 297
Embankment stability, 19

F
Field tests
dynamic compaction, 199, 297
grouting, 266
seismic testing, 234
stone columns, 4
load tests, 62, 73, 101, 116, 148, 172, 185, 212
performance, 131, 199
underwater compaction, 279
vibratory compaction, 320
Footing, spread, 101
Foundations
design, 62
performance, prediction, 172
settlement, 185
stabilization, 199

G
Glacial soil, granular, 101
Grouting, 224
 compaction, 234, 248
 specifications, 266
 tests, 266
Poisson's ratio, 234
Pore water pressure, 224
Preaugering technique, 131
Probes, vibratory, 297, 320

I
Injection, deep chemical, 266
Instrumentation, stone column testing, 85, 101

J
Japan, use of compaction piles in, 4, 32

Laboratory mixing test, 224
Landfill/strip mine, dynamic compaction, 199
Lateral static densification, 248
Liquefaction, 4, 32, 224, 297, 320
 mitigation, 172
 potential, 248
Load, inclined, 47
Load tests, 32, 62, 73, 148, 212
 plate, 101, 116, 172
 vertical, 185

M
Marine applications, vibratory deep compaction, 279
Mechatronic consolidation system, 32
Microshearing, 248
Model tests, centrifuge, 47

N
Numerical analysis, 224

P
Penetration tests, 172, 199, 297, 279
Penetrometer testing, cone, 172
Permeability, 297
Plate load test, 101, 116

Sand
 alluvial, 224
 columns, 19
 compaction piles, 4, 32, 47
 densification, 4, 32, 248, 297, 320
 Shirasu, 224
 silty, 101, 185
 vibration, 4, 32
Seismic tests, 172
 crosshole, 234
 downhole, 234
 uphole, 234
Settlement, land, 199, 212, 248, 266, 297, 320
 culm processing area, 116
 footing level, 101
 foundation, 172, 185
 long-term, 199
 marine, 279
 reclaimed land, 4
Shear deformation, 224
Shear, micro, 248
Shear strength, 19
Shirasu, 224
Silty sand, 101
Sites, building, filled, 212
Slide correction, 131
Slope stabilization, 131
Soil
 borings, 116
 clayey, 19, 32, 47, 73, 185, 248
 coherence, 266
 cohesionless
 compaction piles, 4
 cohesive, 62, 73
 compaction piles, 4
 granular, 297
 granular glacial, 101
non-cohesive, 62
peat, 185
sandy, 19, 32, 47, 101, 185, 248, 297, 320
Shirasu, 224
silt, 101, 185
stabilization, 4, 73
Soil stress ratios, 148
Spread footing, 101
Stability analysis, 19, 47
Stabilization, 4, 73, 199
deep chemical, 266
slope, 131
Stone columns, 19, 101, 199
British developments, 85, 212
coil waste deposits, 116
design and installation, 4, 131, 172
instrumentation, 85, 131
load tests, 62, 73, 148, 172, 185, 212
performance specifications, 73
plate load tests, 101, 116
slope stabilization, 131
testing, 85
Strip mine/landfill, dynamic compaction, 199

T
Tunneling, soft-ground, 266
Tunnels, highway, 101
brick-lined, 266

U
Underwater fill, 279

V
Vertical load tests, 185
Vibrating casing pipe, 32
Vibratory compaction, 4, 32, 320
marine, 279
soil, 297
with stone columns, 62, 85, 116, 185, 212
Vibratory probes, 297, 320
Vibro-composer, 4
Vibro displacement, 131
Vibroflotation, 212, 279
Vibro replacement, 62, 73, 85, 131, 172, 185