Subject Index

A

Anisotropic properties, 337, 583, 740
Annealing
 dislocation loops, 318
 embrittlement, 172
 high temperature, 556
 hardening, 151
 isochronal, 406
 kinetics, 151, 875
 mechanical properties, 1103, 1122
 positron techniques, 172, 472, 486, 495
 recovery mechanisms, 151
 solute segregation, 603, 645
 thermal treatments, 50, 64, 337
 vacancy defects, 172, 472
ASTM standards
 A 203—Specification for Pressure Vessel Plates, Alloy Steel, Nickel, 311
 A 706—Specification for Low-Alloy Steel Deformed Bars for Concrete Reinforcement, 1304
 A 508—Specification for Quenched and Tempered Vacuum-Treated Carbon and Alloy Steel Forgings for Pressure Vessels, 23
 A 533—Specification for Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, Manganese-Molybdenum and Managanese-Molybdenum-Nickel, 238
E 208—Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels, 251
E 693—Practice for Characterizing Neutron Exposures in Ferritic Steels in Terms of Displacements per Atom, 420
Atomic clustering processes, 437
Atomic displacements, 3, 172
Auger electron spectroscopy, 633, 645, 1061
Auger sputter profiling, 621
Austenitic stainless steels
 boron microalloying, 1122
 cavity formation, 1051
 cold-worked, 1083
 creep rate, 995, 1034, 1083
 dislocation loops, 1015, 1034
 dislocation structure, 1015, 1051, 1061
 displacement damage, 1051
 ductility, 995, 1051, 1071
 fatigue crack growth, 1083, 1095, 1103
 fluence levels, 1071
 fracture toughness, 1071, 1103
 hardness testing, 1061
 mechanical properties, 1071, 1083, 1095, 1103
 microchemical changes, 969, 1015, 1051
 microstructural analysis, 995, 1015, 1034
 nickel content effects, 1015
 phase diagrams, 945
 phosphorus effects, 995
 rare earth microalloying, 1122
 sink strength, 1015
 solute segregation, 1015
 surface modifications, 1061
 tensile strength, 1034, 1071, 1103
 void swelling, 995, 1015, 1122
Auto-oscillation processes, 594

B

Basal pole figures, 337
Body-centered cubic metals, 928
Bonding curves, 270
Boron microalloying, 1122
Boron nuclei, 3
Brittle-ductile transitions, 23, 50, 151
Brittle fracture, 203, 507 (see also Fracture)
Burger's vector, 375, 385, 530, 1034

C

Calandria tube assemblies, 311, 1304
Cascade
 ceramic defects, 733
 collapse, 385
Cascade—continued

collisions, 406, 583
damage, 385
displacements, 375, 385, 406, 463
internuclear, 3

Ceramics damage
alumina, 740, 749, 764
aluminum matrix composites, 776, 785
amorphization threshold, 740
anisotropic parameters, 740
cascade defects, 733
cavity formations, 749
compressive stress, 740
crystal defects, 733, 740, 776
defect hardening, 740
density measurements, 733
diffraction analysis, 733
electrical conductivity, 776
fusion window materials, 764
interstitial dislocation loops, 749
mechanical properties, 740, 749, 764
microstructural analysis, 785
near-surface properties, 740
point-defects, 764
polycrystalline spinels, 749, 764
recrystallization, 733
resistivity, 733
superconductors, 733
tensile strength, 785
tension tests, 785
thermal conductivity, 764

Charpy impact testing
fuel subassemblies, 1209
fusion reactor components, 1256
pressure vessel beltlines, 56, 216
pressure vessel plate materials, 203, 238, 1304
pressure vessel trepanned materials, 93
reconstituted specimens, 76
submerged-arc weld metals, 186, 251, 270, 292

Cold working techniques, 945, 995, 1083
Computer modelling, 131, 375, 1167
Contractile strain ratios, 337
Control rod guide tubes, 448
Convergent beam diffraction, 186

Copper/copper alloys
aluminum, 448, 854
annealing, 151
chromium, 854
defect clusters, 813
dislocation motion, 813
displacement damage, 854
ductility, 835, 846
electrical conductivity, 813

fracture morphology, 835, 846
grain boundary analysis, 813
hafnium, 854
hardening, 151, 813
heat flux components, 835
helium bubble growth, 875
interstitial migration, 875
iron, 131
laser welding effects, 854
microstructure evolution, 854
nickel, 151, 846
precipitation, 131, 813, 846
positron studies, 875
palladium, 406
recrystallization, 846
solute segregation, 813
tensile properties, 818, 835, 846
thermal conductivity, 813, 846, 854
void swelling, 813, 835, 846

Corrosion resistance, 689, 945
Crack propagation, 835, 1083
Cryogenic temperatures, 406
Crystallographic
conductivity, 776
impurities, 594
orientation, 337, 740
response, 437
structures, 406, 733
textures, 337
void swelling, 594

Cyclotrons, 875, 915

D

Defect
absorption, 709
densities, 569, 594, 733
hardening, 740
production, 420, 463, 472
solute clusters, 151, 813
Depleted tungsten, 3
Depleted uranium, 3
Design code databases, 12
Differential thermal analysis, 945
Diffraction analysis, 689, 733
Diffusivity parameters, 472, 486, 495
Disk bend test, 1051

Dislocation
bias factors, 928
boundary, 1135
density, 885
dissociated, 448
loops, 1015, 1034, 1167, 1180
mobility, 117, 517
pinning, 1061
slip bands, 813
structure, 1015, 1051, 1157
Displacement damage, 420, 854
Doppler measurements, 172, 495
Drop-weight testing, 251, 270
Ductile fracture behavior, 203, 835, 846
Dynamic fracture toughness, 311

E

Electric Power Research Institute, 238, 251
Electrical conductivity, 355, 776, 813
Electrical resistivity, 472, 733, 945
Electron beam welding, 76, 1103
Electron irradiation
dislocation loops, 448, 1034
order-disorder transformation, 406
void swelling, 569
vacancy clustering, 448
Electron microscopy
analytical, 603, 621, 897
atomic probe field-ion, 131
diffraction, 486, 958, 1157
high resolution, 117
high-voltage, 448, 785, 1034
in-situ transmission, 375
field emission gun, 633, 645
scanning, 186, 785, 1061
transmission, 93, 117, 131 (see also Transmission electron microscopy)

Embrittlement,
dislocations, 448, 1157
helium, 486, 507, 897, 915
high temperature, 216, 495, 1287
hydrogen, 645
low temperature, 1180
mechanisms, 23, 50, 203
pressure vessels, 131, 151, 172 (see also Pressure vessel fracture toughness)
temperature induced, 216
vacancy clustering, 448
Ensemble macrodefects, 556
Exponential curve-fitting models, 270

F

Face-centered cubic alloys, 928
Fast breeder reactor studies
cooling channel ducts, 1190, 1267
core components, 569, 633, 1157, 1167
fuel claddings, 995, 1209, 1267
fuel pin claddings, 1122, 1180
pressure vessel materials, 1287
wrapper tube materials, 1083, 1209
Fast flux test facility studies
austenitic steels, 1071
ceramic composites, 785
copper alloys, 835, 846
martensitic steels, 1256, 1267
performance prediction model, 12
vanadium alloys, 885, 928
Fatigue
axial specimens, 1095
crack growth, 1083, 1103
resistance, 1103
Faulted vacancy loops, 385
Fracture
brittle, 203, 507, 1267
channel, 1234, 1267, 1304
crack arrest, 251
ductile, 203, 238, 835, 846
elastic-plastic, 270, 1287
mechanics, 203, 216, 270, 1103
morphology, 835, 846
property recovery, 318
resistance curves, 203, 216
toughness studies, 50, 56, 151, 1071
Frank loops, 1034, 1051
Fuel claddings
austenitic steels, 995, 1071, 1122
chromium alloys, 448, 603
martensitic steels, 1180, 1209, 1267
titanium alloys, 495
zircaloys, 689
Fuel assemblies, 64, 1122
Fuel stringers, 64, 645, 667
Fuels
oxide, 1071
plutonium, 1071
uranium, 3, 797, 1122
Fusion Materials Program, 1234
Fusion reactor applications
alumina crystals, 749, 764, 776
aluminum matrix composites, 785
ceramic composites, 785
titanium alloy, 495
zircaloys, 689
blanket structures, 1256
copper alloys, 813, 835, 854
first wall components, 1051, 1095, 1103
martensitic stainless steels, 979, 1157, 1167, 1243
plasma-facing components, 846
plate materials, 1287
polycrystalline spinels, 749
structural wall components, 897
superconductors, 733
vanadium alloys, 897
window materials, 764
G

Garter springs, 311
Grain boundary microchemistry, 621

H

Heat treatments, 56, 318, 472, 703
Heavy Section Steel Irradiation Program, 238, 251
Heavy water modulation, 3, 311
Helium desorption, 486
Helium migration, 875, 979
Hexagonal close packed metals, 385
High energy transport code, 3
High flux isotope irradiation, 1135, 1256
High temperature irradiation capsules, 12
Hydride cracking, 318
Hyperbolic tangent model, 270

I

Impression testing, 337
Impurity diffusion, 375, 507
Indexed temperature values, 203
Intergranular corrosion, 603
Intermetallic precipitates, 355
International Atomic Energy Agency, 203
Interstitial
 - cluster nucleation, 437
 - concentrations, 437, 517
 - dislocations, 448, 517, 749
 - drag mechanisms, 621
 - migrations, 875
 - reordering, 406
 - sink strengths, 569
 - solute segregation, 689
Inverse-Kirkendall mechanism, 621, 709
Ion implantation, 1061
Ion irradiation
 - argon bubble formation, 486
 - austenitic steels, 958, 1015, 1051
 - ceramics damage, 733, 749
 - copper, 375
 - creep parameters, 530, 540
 - displacement cascades, 385, 463
 - martensitic steels, 979, 1167
 - microstructural analysis, 958
 - nickel, 375
 - order-disorder transformation, 406
 - pressure vessel steels, 238
 - recrystallization, 733
 - solute segregation, 621, 703
 - trend curves, 238
 - void swelling, 556, 1015
Ionic conductivity, 355

Irradiation creep
 - crack growth rates, 1034, 1083
 - dislocations, 517, 530, 540
 - fatigue interaction, 1083, 1103
 - general, 448, 1209
 - interstitial concentrations, 517
 - loop growth kinetics, 530
 - phosphorus effects, 995
 - plastic formation, 530
 - point-defect concentrations, 517, 530, 540
 - theoretical models, 517, 540
 - thermal aging, 1135, 1190
Isothermal positron studies, 875

K

Kirkendall effect, 603
Knoop hardness testing, 1061

L

Laser welding effects, 854
Lattice parameters, 151, 172, 583
Light water modulation, 3
Lindhard function, 420
Load extension testing, 311
Longitudinal tension specimens, 311
Low activation steels
 - electron diffraction analysis, 958
 - austenitic alloys, 945, 958, 969
 - cold worked, 945
 - corrosion resistance, 945
 - diffusion, 969
 - ductility, 945
 - electrical resistivity, 945
 - enrichment, 969
 - helium bubble density, 979
 - loop distribution, 979
 - magnetic response, 945
 - martensitic alloys, 979
 - microstructure, 958, 969
 - phase diagrams, 945, 958, 969
 - radioactivity levels, 958, 979
 - recycling, 969
 - solute segregation, 969
 - thermal analysis, 945
 - thermomechanical treatments, 945
 - void swelling, 958, 969
Lower bond curves, 251
Magnetic resistivity, 472, 945
Martensitic stainless steels
 austenitic steel comparisons, 1167, 1209, 1243
 brittle-ductile transitions, 1256, 1267
 brittle fracture, 1267
 Charpy impact testing, 1209, 1256, 1304
 computer models, 1167
 channel fracture, 1234, 1267, 1304
 deformation, 1234
 dislocation loops, 1157, 1180, 1234
 dislocation structures, 1135, 1167
 ductility, 1180, 1234, 1243
 elastic-plastic fracture, 1287
 embrittlement, 1157, 1180, 1209, 1287
 impact hardening, 1243, 1256
 irradiation creep, 1209
 Laves phase, 1135, 1157, 1190
 linear elastic behavior, 1267
 mechanical properties, 1209, 1234, 1243
 microalloyed, 1304
 microstructural analysis, 1135, 1157, 1167, 1180
 phase stability, 1209
 precipitate evolution, 1190
 precipitate structures, 1135, 1157, 1180
 solute concentrations, 1157
 stress parameters, 1190, 1243
 sulfide morphology, 1304
 tensile properties, 1135, 1180, 1209, 1267
 thermal aging, 1135, 1190, 1287
 thermal conductivity, 1190
 upper shelf energy, 1256, 1287
 void swelling, 1157, 1167, 1234
Material feasibility studies, 12
Materials open test assembly, 12
Metals and metal alloys
 aluminum, 463
 aluminum-carbon, 785
 aluminum-manganese, 486
 aluminum-nickel, 709, 785
 aluminum-silicon, 785
 aluminum-zinc, 709
 austenitic steels, 495, 928 (see also Austenitic stainless steels)
 beryllium, 3
 chromium, 621
 chromium-implanted alumina, 740
 chromium-nickel-niobium, 603
 copper, 375, 569, 835 (see also Copper/copper alloys)
 copper-aluminum, 448, 854
 copper-chromium, 854
 copper-hafnium, 854
 copper-nickel, 151, 846
 copper-palladium, 406
 iron, 420
 iron-copper, 131
 iron-copper-nickel, 131
 iron-implanted aluminum, 703
 iron-manganese-chromium, 945, 958, 969
 iron-nickel-chromium, 448, 472, 645 (see also Austenitic stainless steels)
 manganese-nickel-molybdenum, 117, 186, 216, 292
 martensitic steels, 633, 979 (see also Martensitic stainless steels)
 nickel, 56, 375, 569, 1034
 nickel-silicon, 709
 plutonium, 1071
 titanium, 495, 385
 tungsten, 3
 uranium, 3, 797
 vanadium, 885 (see also Vanadium alloys)
 vanadium-chromium-titanium, 885, 897
 vanadium-iron, 928
 vanadium-silicon-titanium, 885, 897, 915
 vanadium-titanium, 885, 915
 vanadium-titanium-niobium, 995
 yttrium, 1122
 zirconium, 337 (see also Zirconium alloys)
Metals recycling, 969
Modified phase diagrams, 709
Molecular antimony ions, 385
Mossbauer effect, 703

N
Neutron embrittlement, 50, 151, 216 (see also Embrittlement)
Neutron fluxes 3, 50, 64, 216
Neutron irradiation
 anisotropic properties, 337
 austenitic steels, 969, 995, 1071, 1122
 ceramics, 733, 764, 785
 copper/copper alloys, 835, 846, 854
 defect production, 420
 fatigue crack growth, 1083, 1304
 fracture behavior, 846, 1071, 1267
 helium embrittlement, 897, 1287
 martensitic steels, 1135, 1180, 1209, 1234
 order-disorder transformation, 406
Neutron irradiation—continued
recrystallization, 733
solute segregation, 621, 633, 667
tensile behavior, 835, 846, 885
vacancy migration, 406
vanadium alloys, 885, 897
void swelling, 556, 835, 969
Neutron scattering, 93, 117, 131
Neutron spectrum, 3, 93
Nil-ductility testing, 238, 251, 311
Nimonic tie bars, 645
Nodular corrosion, 355
Nonlinear regression analyses, 270
Nuclear accelerators, 749, 1167
Nuclear reactor types
advanced gas-cooled, 645, 667
boiling water, 355
CANDU, 318, 337
fast breeder, 569, 633 (see also Fast breeder reactor studies)
fusion (experimental), 12, 486, 517 (see also Fusion reactor applications)
gas-cooled, 12, 64, 603
graphite moderator, 64
heavy water, 93
light water, 76, 251, 270
liquid metal breeder, 1190, 1267
pressurized heavy water, 311
pressurized water, 23, 50, 117, 216
space power, 12, 1071
Tokamak (fusion), 1095
water-cooled, 776
Nuclear reactors (commercial)
Ardennes Nuclear Power Plant (France), 23, 117
BOR-60 reactor (Russian Republic), 1122
Imatra Power Company (Finland), 203
Nuclear Electric (England), 64
Phenix reactor (France), 995
Rajasthan Atomic Power Station (India), 311
Tarapur Atomic Power Station (India), 56
Nuclear reactors (experimental)
Argonne National Laboratory (USA), 885
Atomic Energy Research Institute (Japan), 1287
CRYOS facility (Russian Republic), 472
Fast Flux Test Facility (USA), 12, (see also Fast flux test facility studies)
Gundremmingen reactor (Germany), 93
Indira Gandhi Center for Atomic Research (India), 486, 495
International Thermonuclear Reactor (Japan), 1051
Japanese Fast Breeder Reactor (Japan), 785, 1083
Japanese Materials Testing Reactor (Japan), 776, 785 1243
Julich (Germany), 3
Los Alamos National Laboratory (USA), 3
Materials Open Test Assembly (USA), 835, 928
Oak Ridge National Laboratory (USA), 238, 251, 270, 1095
O
Onsager's relations, 437
Optical metallography, 186
Ostwald ripening process, 875
Outdiffusion, 703
Oxide dispersion strengthening, 846
Oxide films, 355
P
Particle morphology, 3, 186
Performance prediction models, 12
Phase decomposition, 318
Phase instability, 945, 958, 969
Phenix fuel subassembly, 1209
Pipe diffusion, 448
Plasticity models, 337
Positron techniques, 172, 472, 495, 875
helium annihilation, 875
Post-irradiated annealing behavior, 151, 172
Pressure vessel safety assessments, 23, 151
Pressure vessel fracture toughness (see also Pressure vessel microstructure)
brITTLE models, 203
cleavage type, 270
copper alloys, 238, 251, 270, 292
crack arrest, 251
ductile behavior, 203, 238, 251
elastic-plastic methods, 270
fluence levels, 216, 251, 270
lower shelf, 238
mechanical properties, 203
neutron fluxes, 203
reference curve, 203, 216, 238
resistance curves, 203
submerged arc welds, 251, 270, 292
upper shelf, 292
welded joints, 216, 238
Pressure vessel microstructure (see also Pressure vessel surveillance programs)
 annealing, 151, 172
 archive material, 93
 Charpy V-notch specimens, 93, 151, 186
 copper precipitates, 93, 186
 ductility, 93
 embrittlement, 172
 grain structure, 186
 hardening mechanisms, 93, 131, 151
 microchemical effects, 93
 neutron fluxes, 203
 manganese alloys, 186
 shell base metal, 117
 submerged arc welds, 186
 ternary iron alloys, 172
 thermal aging, 131
 vanadium precipitates, 93

Pressure vessel surveillance programs (see also Pressure vessel microstructure)
 base metals, 23, 76, 117
 Charpy impact testing, 56, 76
 core shells, 23, 56, 117
 dosimetry characteristics, 23, 50
 fracture toughness, 50
 low alloy steels, 23, 64, 117
 steel claddings, 56
 stud welds, 76
 temperature monitoring, 50
 tie bars, 64
 upper shelf energy, 50, 56, 76
 Primary knock-on atoms, 420
 Prismatic slip, 337
 Proton irradiation, 3, 355, 689
 Pyramidal pole figures, 337

Radiation damage microstructure (see also Radiation damage parameters)
 argon bubble formation, 486
 blistering, 486
 brittle fracture, 507
 climb mechanisms, 448
 creep, 448
 crystal response, 437
 defect production rates, 463, 472
 diffusion scattering, 486, 507
 dislocations, 448, 463
 displacement cascades, 463
 embrittlement, 251, 448
 helium impurities, 495, 507
 hydrogen effects, 463
 interstitial solutions, 437, 472, 495
 ion fluxes, 463
 loading regimes, 507
 point-defect solutions, 437, 448
 positron annihilation, 486, 495
 pressurized cracks, 507
 resistivity, 472
 stacking fault tetrahedra, 448
 titanium carbide precipitates, 495
 void swelling, 437, 448, 472

Radiation damage parameters (see also Radiation damage microstructure)
 annealing defects, 406, 472
 collision cascades, 406
 defect production rates, 420, 472
 dislocations, 385, 406
 displacement cascades, 375, 385, 420
 flux spectrums, 420
 loop formation, 375, 385
 molecular antimony ions, 385
 order-disorder transformation, 406
 recovery peaks, 375

Radiation embrittlement, 238 (see also Embrittlement)
 Rare earth metal microalloying, 1122
 Reconstituted impact specimens, 76
 Recrystallization, 337, 733, 797, 846
 Reference toughness curves, 203, 216, 238
 Refractory metal specimens, 12
 Residual compressive stress, 740
 Residual elongation, 311

S
 Scandium-doped alloys, 472
 Schaeffler diagrams, 958
 Seeger's dispersed barrier model, 813
 Simons and Wiedersich models, 420
 Solubility studies, 495
 Solute concentrations, 355, 1157
 Solute segregation
 austenitic alloys, 969, 1015
 binary alloys, 709
 chromium precipitates, 603, 621
 copper alloy cavities, 813
 core structures, 633
 corrosion resistance, 603, 621, 689
 diffraction analysis, 689
 fuel claddings, 689
 fuel stringers, 667
 grain boundary micro-chemistry, 621, 645, 667
 heat treatments, 703
 hydrogen embrittlement, 645
 interfacial, 633
 interstitial interaction, 689, 709
Solute segregation—continued
iron implanted aluminum, 703
macroscopic properties, 667
mechanical properties, 689
microstructure analysis, 667, 709
nimonic PE 16, 667, 740
outdiffusion, 703
silicon enrichment, 621
phase transformation, 703, 709
point-defect properties, 689, 709
stress rupture properties, 667
surface areas, 621, 703
tie bars, 645, 667
uranium silicide fuels, 797
void swelling, 633, 709, 969
zircaloy-2, 689
Space power reactors/fuels, 12, 1071
Spallation neutrons, 3
Spectrometry, 472, 486, 495
Spectroscopy
Auger electron, 633, 645, 1061
chemical analysis, 1061
positron annihilation, 875
Rutherford backscattering, 703, 740
Stacking fault tetrahedra, 448
Stochastic fluctuations, 583
Stress corrosion cracking, 621
Stress relief time, 186
Stress rupture properties, 64, 667, 1190
Sulphide morphology, 1304
Superconductors, 733

T
Temperature control systems, 12
Tensile strength testing
austenitic steels, 1034, 1071
ceramic composites, 785
copper/copper alloys, 835, 846, 854
martensitic steels, 1135, 1180, 1243, 1304
pressure vessel steels, 23
vanadium alloys, 885, 897, 915
zirconium alloys, 311, 318
Thermal conductivity
ceramic composites, 764, 776
copper alloys, 813, 846, 854
martensitic steels, 1190
vanadium alloys, 897
Thin foil techniques, 186
Transient interstitial absorption, 517, 540
Transmission electron microscopy
aluminas, 749
aluminium alloys, 463, 486
austenitic alloys, 995, 1095
ceramic composites, 785
crystalline alloys, 645
copper/copper alloys, 875
dissiliconitic alloys, 797, 1167, 1209
polycrystalline spines, 749
superconductor cascades, 733
titanium alloys, 385
vanadium alloys, 885, 928
Trend curves, 56

U
Unirradiated material databases, 270
U.S. Department of Energy, 406
U.S. Nuclear Regulatory Commission, 93, 251

V
Vacancy
clusters, 385, 448
defects, 172, 463, 472
emissions, 583
loop formations, 463, 569
mobility, 1015
Vanadium alloys
crhomium-titanium, 885, 897
dislocation density, 885, 928
elongation, 915
fabricability, 897
hardening resistance, 885, 897, 915
helium embrittlement, 897
iron, 928
metal carbides, 897
microstructural analysis, 885
silicon-titanium, 885, 897, 915
tensile properties, 885, 897, 915
tritium trick, 915, 928
titanium, 885, 915
void swelling, 885, 928
Vickers hardness, 945
Void swelling
anisotropic transport, 583
annealing, 556, 594
austenitic alloys, 995, 1015, 1122
bias factors, 569, 1015
breeder core components, 569
collision cascades, 583
copper alloys, 813, 835, 846
copper cavities, 813
diffusion growth rates, 556
dislocation loops, 569
ensembles, 556
fracture behavior, 835
impure crystals, 594
macrodefects, 556
martensitic alloys, 1157, 1167, 1180
mathematical models, 594
point-defect parameters, 556, 569, 583
sink conditions, 556, 569, 594
solubility, 709
stochastic fluctuations, 583
tensile properties, 885
theory, 569
vacancy emission, 583
vanadium alloys, 885, 928

W

Weibull-based analysis, 270
Welding techniques, 1103

X

X-ray techniques
absorption, 131, 186
diffraction, 472, 689, 703, 945
energy dispersive, 1190
irradiation, 776
microanalysis, 1157
microdiffraction, 1190

Z

Zircalloys, 311, 337, 355 (see also
Zirconium alloys)
Zirconium alloys
anisotropic properties, 337
annealing, 318, 337
coolant channel components, 311
contractile strain ratios, 337
fluence levels, 311
fuel claddings, 355, 689
fuel pressure tubes, 311
garter springs, 311
heat treatments, 318
hydride cracking, 318
impression testing, 337
intermetallic precipitates, 355
nil-ductility transition temperature, 311
nodular corrosion, 355
plasticity models, 337
phase decomposition, 318
prismatic slip, 337
residual elongation, 311
solute segregation, 689
tensile strength, 311, 318
thick walled tubings, 337