Air oxidation, 563
Anisotropy
 hydrogen impact, 399
 of plasticity, 303
Annealing, 425
 parameter, 482
Anodic protection, 623
Axial splits, 316

Barrier layer, lithium in, 793
β quenching, 756
Boiling water reactor corrosion loop test, 735
Boric acid, effect on oxidation kinetics, 793
Boron, behavior in oxides on claddings, 773
Burst tests, 356

Cathodic charging, 563
Charpy energy, ultra-high-fluence, 139
Charpy testing, degraded cladding, 316
Chlorine, effect on microstructure, 3
Chromium
 corrosion and, 623
 effects on Zircaloy, 609
Cladding
 behavior under LOCA conditions, 256, 279
 cold pilgering, 460
 corrosion, 658
 second-phase particles and, 678
 degraded, fractography and fracture behavior, 316
 delayed hydride cracking, 340
 E110 alloy, 545
 hydrogen impact on plasticity and creep, 399
 hydrogen transport in oxide film, 901
 irradiation-induced damage, 377
 microstructure, low enthalpy failures and, 234
 simulated BWR corrosion loop test, 735
 unirradiated, texture and fracture toughness, 303
 water chemistry effect on oxidation kinetics, 793
Cold pilgering, 425
 process control, 460
Corrosion
 composition and fabrication process effects, 505
 correlation with oxide film characteristics, 815
 dilute alloy addition effect, 525
 during irradiation, 756
 electron irradiated zirconium alloys, 709
 hydrogen and, 399, 836, 853
 iron, chromium and vanadium, 623
 irradiation damage, 15
 lithium and boron effect, 773
 long-time, transition element effects, 609
 mechanism, 623
 metal/oxide interface and, 918
 microstructure effect, 658
 second-phase particle effect, 678
 ultra-high-fluence, 139
 zirconium alloys, 3
Corrosion loop test, BWR, 735
Corrosion rate
 hydrogen and, 563
 tin and, 592
Corrosion resistance, 623
 tubing, 425
Crack growth
 irradiated Zircaloy cladding, 340
 resistance, initial crack size and, 356
Creep
 activation temperature, 74
 composition and fabrication process effects, 505
 hydrogen impact, 399
 irradiation-induced, 51, 74
 under LOCA conditions, 256
 zirconium alloys, 3
Crystal structure, tin and, 592

Deformation, irradiation-induced, 15, 74, 377
Degradation, cladding, 316
Deuterium pickup
 during irradiation, 756
 electron irradiation and, 709
 oxide, 853
Diffusion, 641
 hydrogen in zirconium, 32
Dislocations
 electron irradiation, 709
 hydrogen impact, 399
 irradiation-induced, 15, 51, 641
 long-term effects, 105
Dissolution, irradiation-induced, 658

Hydride cracking
 delayed, 32
 irradiated Zircaloy cladding, 340
 long-term irradiation effects, 122
 fracture toughness and, 316
 ultra-high-fluence, 139

Hydrogen
 corrosion rate and, 563
 impact on plasticity and creep, 399
 long-range migration, 196
 in oxide, 853
 stress-induced diffusion, 340
 terminal solid solubility, 173
 in zirconium, 32
Hydrogen embrittlement, Zircaloy, 196
Hydrogen ingress, 853
 and corrosion, 641
Hydrogen uptake, 658
 corrosion and, 836
 during irradiation, 756
 by metal, 853
 metal/oxide interface, 918
 oxide film, 901
 second-phase particle effect, 678

Impedance, oxide film, 815
Impurity content, properties and, 545
In-PWR behavior, 505
Intermetallic precipitates, 709
 hydrogen transport in oxide film, 901
Iron
 concentration, long-term irradiation effects, 105
 corrosion and, 623
 dissolution rate, 658
 effects on Zircaloy, 609
Irradiation
 corrosion and hydrogen uptake during, 756
 creep, 51
 damage, Zircaloy, 15
 deformation at high neutron fluences, 74
 delayed hydride cracking, 340
 long-term, effect on fracture, 122
 M5 alloy, 505
Irradiation growth
 at high neutron fluences, 86
 long-term irradiation, 105
 temperature dependence, 86
 ultra-high-fluence, 139
Irradiation hardening, 377
 ultra-high-fluence, 139

Finite element method, 460
Forge-quench-forge process, 482
Fourier transform infrared spectroscopy, 853
Fractography, degraded cladding, 316
Fracture
 degraded cladding, 316
 long-term irradiation effects, 122
Fracture toughness
 reduced, hydride reorientation and, 340
 texture effect, 303
 ultra-high-fluence, 139
Fracture toughness testing, effects of size, geometry and material, 356

Gaseous charging, 563
Grain size, 425

Hardening, hydrogen impact, 399
Heat treatment, corrosion and, 658
Heavy water, 563
Hydride
 impact on plasticity and creep, 399
 layer, metal/oxide interface, 563
 orientation, 425
K

Kinetics
alpha-beta phase transformation, 256
metal/oxide interface and, 918
water chemistry effect, 793
Knoop microhardness test, ultra-high-fluence, 139

L

Lithium, behavior in oxides on claddings, 773
Lithium hydroxide, 877
effect on oxidation kinetics, 793
Loss-of-coolant accident, 256, 279

M

M5 alloy, out-of-pile and in-pile properties, 505
Mechanical properties, irradiation damage, 15
Metal/oxide interface
examination, 563
lithium concentrations, 773
multi-scale characterization, 918
Microchemical composition, long-term irradiation effects, 105
Microhardness, ultra-high-fluence, 139
Microstructure
absence of irradiation, 3
cladding, low enthalpy failures and, 234
corrosion and, 641, 678
dilute alloy additions effect, 525
effect on corrosion behavior, 658
electron irradiation, 709
hydrogen ingress, 641
irradiation-induced changes, 51
long-term effects, 105
neutron irradiation effects, 15
phase condition and impurity content, 545
tin and, 592
Modeling, cold pilgering, 460
Molybdenum, dilute alloy additions and corrosion, 525
Morphology, corrosion and, 623

N

Neutron fluence, 74, 86
ultra-high, 139
Neutron irradiation
compared with electron irradiation, 709
neutron irradiation effects on microstructure and properties, 15
Nickel, dissolution rate, 658
Niobium
corrosion and, 641
dilute alloy additions and corrosion, 525
Nodular corrosion, 425
Nuclear materials, irradiation-induced changes, 74
high-fluence growth, 86

O

Oxidation
high-temperature, under LOCA, 279
metal/oxide interface and, 918
zirconia films, 877
Oxide film, 592, 623, 773
correlation with corrosion performance, 815
electrical potential gradient, 836
electric resistance, 815
hydrogen transport, 901
lithium and boron behavior, 773, 793

P

Phase transformation
alloy structure, 545
alpha-beta, 256, 482
Plastic deformation model, 425
Plasticity, hydrogen impact, 399
Post-irradiation examination, 316, 340, 853
Precipitates
E110 alloy, 545
growth, in-process investigation, 482
irradiation damage, 15
irradiation-induced, 51
long-term irradiation effects, 105
role in hydrogen transport, 901
ultra-high-fluence, 139
Pre-oxidation, 756
Pressure tubes
corrosion and hydrogen uptake during irradiation, 756
deformation, irradiation effects, 86
dislocation and precipitates, long-term irradiation effects, 105
effects of size, geometry and material in fracture toughness testing, 356
fracture, long-term irradiation effects, 122
high-fluence irradiation growth, 86
hydrogen in oxide and metal, 853
microstructural aspects, corrosion and hydrogen ingress, 641
Primary light water, 563

Q
Quenching, 425

R
Raman spectroscopy, 877
Reactivity Initiated Accident simulation testing, low enthalpy failures and cladding microstructure, 234

S
Scanning electron microscopy, 918
Secondary ion mass spectrometry, 773, 853, 901
Second-phase particles, 658, 853
effect of dilute alloy additions, 525
impact on corrosion and hydriding performance, 678
in-process investigation, 482
ultra-high-fluence, 139
Shear fracture, 356
Slant fracture, 356
Slip systems, 377
Solubility, terminal solid, hydrogen, 173
Strain, hydrogen impact, 399
Strain softening, 377
Stress, hydrogen impact, 399
Stress corrosion cracking, iodine-induced, 377
Stress distribution, zirconia films, 877
Stress gradients, tensile and compressive, long-range migration of hydrogen, 196
Stress intensity threshold, 340
Sulfur, effect on creep, 3
Surface defects, 460

T
Tensile property, 425
ultra-high-fluence, 139
Texture, 3
effect on fracture toughness, 303
irradiation-induced changes, 74
tubing fabrication process, 425
ultra-high-fluence, 139
welding effects, 234
Thermal shock, 279
Thermomechanical processing, 482
Tin, corrosion rate and, 592
Tool optimization, 460
Tubing, new fabrication process, 425

V
Vanadium
corrosion and, 623
dilute alloy additions and corrosion, 525
effects on Zircaloy, 609

W
Water chemistry, 756
effect on oxidation kinetics, 793
Water reactors, long-range migration of hydrogen, 196
Welding, effects on Zircaloy structure, 234

Z
Zircaloy cladding
behavior under LOCA conditions, 256, 279
delayed hydride cracking, 340
cold pilgering, 460
corrosion and hydrogen uptake 836
during irradiation, 756
corrosion behavior, 658
correlation with oxide film characteristics, 815
corrosion rate and tin, 592
electron irradiated, 709
hydrogen, 32
corrosion rate and, 563
impact on plasticity and creep, 399
migration, 196
transport in oxide film, 901
iron, vanadium, chromium effects, 609
low enthalpy failures and cladding microstructure, 234
neutron irradiation effects on microstructure and properties, 15
precipitate growth, in-process investigation, 482
second-phase particles and corrosion, 678
simulated BWR corrosion loop test, 735
stress distribution in zirconia films, 877
terminal solid solubility of hydrogen, 173
tubing fabrication process, 425
ultra-high-fluence, 139
unirradiated cladding, texture and fracture toughness, 303
water chemistry effect on oxidation kinetics, 793
Zirconia films, stress distribution, 877
oxidation kinetics, 793

Zirconium
hydrogen in, 32
neutron irradiation effects on microstructure and properties, 15
Zirconium hydride, 32
Zirconium oxide, 756
Zirconium silicide, 853
Zirconium-steam reaction, 279