Subject Index

A

Adsorption, 3
Aircraft applications, advanced, 123
Aluminum alloys, 3, 81
 cast, 285
 endurance limits, 135
 nickel aluminum bronze, 319
 particle reinforced, 96
 stress intensity factor effects, 63
thin sheet, 227
Amplitude, variable, 374
ASTM standards
 E 647, 269, 319

B

BCS model, 252
Biaxial fatigue, 192
Biaxiality ratio, 155, 175
Bridges, highway, 374
Bronze, nickel aluminum, 319

C

Castings, wall, 411
Closure effects, 31
Closure-free fatigue life, 192
Compressive overstrain, periodic, 192
Compressor disk titanium alloys, 81
Constant amplitude fatigue limit, 192
Constant amplitude loading, 227
Constant amplitude torsion, 412
Constraint, 155, 227
Copper, 31
 copper-base alloy, 319
Corrosion, 341
 fatigue, 319
Crack closure, 46, 209
 aluminum alloy, 31, 227
 cast nickel-aluminum bronze, 319
 fatigue limit prediction, 304
 nickel-based superalloy, 155
 steel, 31
 titanium alloy, 109, 123, 175
Crack growth, near threshold, 3, 63
Crack growth rate, 192, 252, 400
Crack initiation, 285
Crack length, 269
Crack, nonpropagating, 411
Crack opening displacement, 227
Crack opening levels, 209

D

Damage mechanisms, 63
Deformation, 341
Dislocation configuration, 31
Dislocation mechanics, 252
Dislocation model, discrete, 252

E

Electron channeling contrast imaging technique, 31
Endurance limits, 135, 361, 411

F

FASTRAN strip yield model, 209
Fatigue limit, 135, 374
Fatigue limit prediction, 96, 304
Finite element model, 209
Fractography, 63

G

Gigacycle fatigue, 135

H

High Speed Civilian Transport, 123
Highway bridges, 374
I

Incubation phenomenon, 135
Intrinsic threshold, 31, 46
Iron
 nodular cast, 411
 spheroidal graphite cast, 411

K

Kitagawa diagram, 96

L

Load history, 175
Loading, biaxial fatigue, 192
Loading, cyclic, 81, 374
Load ratio, 63, 175
Load reduction, 175, 227
Load shedding, 175, 209

M

Material flow strength, 209
Mean stress, 304, 341, 411
Microstructure, 3
Models and modeling
 BCS model, 252
 crack closure, 227
 discrete dislocation model, 252
 fatigue life calculation, 285
 finite element, 209
 near-threshold fatigue crack propagation, 3
 short notches, 361
 stress-life, for life prediction, 374
 strip yield model, 209

N

nickel alloys, 135
nickel aluminum bronze, 319
nickel-based superalloy, 155
nickel-base metal, 400
nickel-base weld metal, 400
notches, 361

O

Overload, 123, 374

P

Plastic deformation, 252
Plasticity, 227
Plasticity-induced closure, 209
Plastic strain amplitude, 31
Plastic zone size, overload, 123
Porosity, 285

R

R-curve, 96
R-effect, 46
Residual stress, 269
Resistance curves, 96
 method, 304

S

Scanning electron microscope, 31
Scanning laser microscopy technique, confocal, 192
Seawater, 319
Secondary dendrite arm spacing, 285
Shear strain, 192
Shielding, crack tip, 46
Spheroidal graphite cast iron, 411
Steam testing, 400
Steel, 135, 374
 stainless, 400
Stiffeners, 374
Strain intensity factor, 192
Stress amplitude, 304
Stress concentration assessment, 361
Stress corrosion cracking, 341
Stress crack propagation threshold, 341
Stress intensity, 319
Stress intensity factor, 81, 135, 227
 cyclic, 63
 effective, 3
 effect on fatigue crack growth rate, 109
 initial, 209
 range, 96, 269
Stress life curves, 285
Stress ratio, 304
 effects, 109
Stress, residual, 46
Strip yield model, 209
Surface crack, 123

T

Tensile specimen, 374
Thin foils, 31
Titanium alloys, 3, 81, 109, 175
 cracking behavior, 341
 overload effects on crack growth behavior, 123
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse stiffener specimens</td>
<td>374</td>
</tr>
<tr>
<td>T stress</td>
<td>155, 175</td>
</tr>
<tr>
<td>Ultrasonic vibratory effort</td>
<td>135</td>
</tr>
<tr>
<td>Vacuum</td>
<td>3</td>
</tr>
<tr>
<td>Variable amplitude loading</td>
<td>411</td>
</tr>
<tr>
<td>Void production</td>
<td>63</td>
</tr>
<tr>
<td>Water testing</td>
<td>400</td>
</tr>
<tr>
<td>Water vapor</td>
<td>3, 341</td>
</tr>
<tr>
<td>Weld</td>
<td>374</td>
</tr>
<tr>
<td>metal</td>
<td>319, 400</td>
</tr>
<tr>
<td>Yield strength</td>
<td>123</td>
</tr>
<tr>
<td>Yield stress</td>
<td>252</td>
</tr>
</tbody>
</table>