Subject Index

A
- Aeolinite, 156
- Appalachians, 163
- ASTM standards, 149
 - D 698, 93, 173
 - D 1557, 173, 197, 209

B
- Bentonite, sand liner, 243
- Bermuda sports center, 156
- Boreholes, 156
- Building pads, 163
- Bureau of Reclamation, 39, 126

C
- Calcite cement, 156
- Calcium carbonate, 229
- Calibration, nuclear gauge, 3
- California, cut and fill, 197
- Canyon fills, deep, 197
- Cement, calcite, 156
- Centrifuge tests, 173
- China, highway embankment compaction/performance, 173
- Chromium, 243
- Clays
 - dry density and hydraulic conductivity, 229
- liners, 254
- Clod test, 72
- Coal mine workings, 149
- Commercial developments, 163
- Compaction curve, 113
- Compactor, 93
- Concrete drilled pier foundations, 149
- Construction control, rapid method of, 39
- Construction testing, soils containing rock, 185
- Cut and fill, 163, 197
differential settlement, 149

D
- Deflectometer, falling weight, 274
- Density control, 185
- Density curves, dry, 126
- Density, dry, 72, 274
- Density, dry/hydraulic conductivity, 229
- Density, dry/water content combinations, 209
- Density, field tests, 58, 72
- Density, in place, 39
- Density measurement, 3, 290
- Density, moisture, 126
- Density, relative, 39
- Dielectric properties, 290
- Drive cylinder density test, 58, 72
- Dynafl eck, 274
- Dynamic compaction, 163

E
- Earthwork construction control, 39
- Earthwork engineering, 137
- Embankment compaction/performance, 173
- Energy, compaction, 113
- transfer, 93
- Erosion, 173
- Excavation vs. compacted settlement, 149

F
- Falling weight deflectometer, 274
- Family curves, 113
- Foundations, differential settlement and, 149
- Free swelling capacity, 243

G
- Gauges, nuclear moisture density, 3
<table>
<thead>
<tr>
<th>H</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposal site liners, 243</td>
<td>Ohio SHRP test road, 274</td>
</tr>
<tr>
<td>Heavy metal, 243</td>
<td>One-point method, 113</td>
</tr>
<tr>
<td>Historic perspectives, 137</td>
<td>Oven-drying water contents, 58</td>
</tr>
<tr>
<td>Hydraulic conductivity, 93, 229, 243, 254</td>
<td></td>
</tr>
<tr>
<td>Hydrocompression, 197, 209</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaolinite, 229</td>
<td>Pavement performance, 274</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Landfills, 254</td>
<td>Penetration testing, 163</td>
</tr>
<tr>
<td>Lead, 243</td>
<td>Permeability, 243</td>
</tr>
<tr>
<td>Limestone, 156, 229</td>
<td>coefficient of, 229</td>
</tr>
<tr>
<td>Liners</td>
<td>Playing surfaces, sports, 156</td>
</tr>
<tr>
<td>clay, 254</td>
<td>Poisson's ratio, 311</td>
</tr>
<tr>
<td>sand-bentonite, 243</td>
<td>Ponds, storm water, 173</td>
</tr>
<tr>
<td>Loess embankments, 173</td>
<td>Precompression, 163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal, heavy, 243</td>
<td>Proctor method</td>
</tr>
<tr>
<td>Mine spoils, surface, 163</td>
<td>ASTM D 698, 93, 173</td>
</tr>
<tr>
<td>Mine workings, coal, 149</td>
<td>ASTM D 1557, 173, 197, 209</td>
</tr>
<tr>
<td>Modulus, 311</td>
<td>Proctor values, 156</td>
</tr>
<tr>
<td>Moisture content, 3, 72, 126, 209, 229</td>
<td></td>
</tr>
<tr>
<td>compact soils, 290</td>
<td></td>
</tr>
<tr>
<td>deep fills, 197</td>
<td></td>
</tr>
<tr>
<td>nuclear device, 58</td>
<td></td>
</tr>
<tr>
<td>Moisture control, 185</td>
<td></td>
</tr>
<tr>
<td>Moisture density, optimum, 126</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Resources Conservation Service, 72</td>
<td>Sand/bentonite liner, 243</td>
</tr>
<tr>
<td>TR-26 and TR-27, 185</td>
<td>Sand cone density test, 58, 72, 290</td>
</tr>
<tr>
<td>Nuclear density gauge, 290</td>
<td>Saturation, 209, 254</td>
</tr>
<tr>
<td>Nuclear density test, 58</td>
<td>Scale dependent hydraulic conductivity, 254</td>
</tr>
<tr>
<td>Nuclear moisture density gauge, 3</td>
<td>Seismic testing devices, 311</td>
</tr>
<tr>
<td>Nuclear test, 72</td>
<td>Settlement, excavation vs. compacted earth, 149</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality control testing, 126, 311</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rammer compactor, 93</td>
<td>Sand/bentonite liner, 243</td>
</tr>
<tr>
<td>Reflectometry, time domain, 290</td>
<td>Sand cone density test, 58, 72, 290</td>
</tr>
<tr>
<td>Residential fills, 209</td>
<td>Saturation, 209, 254</td>
</tr>
<tr>
<td>Road, subgrade modulus variability, 274</td>
<td>Scale dependent hydraulic conductivity, 254</td>
</tr>
<tr>
<td>Rock particles, oversized, 185</td>
<td>Seismic testing devices, 311</td>
</tr>
<tr>
<td>Rubber balloon density test, 72</td>
<td>Settlement, excavation vs. compacted earth, 149</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand/bentonite liner, 243</td>
<td>Settlement plates, 163</td>
</tr>
<tr>
<td>Sand cone density test, 58, 72, 290</td>
<td>Shell fragments, 156</td>
</tr>
<tr>
<td>Saturation, 209, 254</td>
<td>Shopping center foundation, differential settlement, 149</td>
</tr>
<tr>
<td>Scale dependent hydraulic conductivity, 254</td>
<td></td>
</tr>
<tr>
<td>Seismic testing devices, 311</td>
<td></td>
</tr>
<tr>
<td>Settlement, excavation vs. compacted earth, 149</td>
<td></td>
</tr>
<tr>
<td>Settlement plates, 163</td>
<td></td>
</tr>
<tr>
<td>Shell fragments, 156</td>
<td></td>
</tr>
<tr>
<td>Shopping center foundation, differential settlement, 149</td>
<td></td>
</tr>
<tr>
<td>Silica, amorphous, 229</td>
<td></td>
</tr>
</tbody>
</table>
Soil problems, subsurface, 137
Soil rock fill, 149
Soils, 39, 58, 126
 clayey, 229
 compaction, subgrade, 274
 compaction testing, 185
 fine-grained, 113
 mechanics, 137
 standards for compaction characteristics
 ASTM D 698, 93, 173
Stability analysis, 173
Stiffness gage, soil, 274
Subgrade modulus, 274
Survey networks, 163

T
Terzaghi, Karl, 137
Three-point impact compaction, 39
Time domain reflectometry, 290
Troxler nuclear gauge, 3

V
Vibrating plate compactor, 93
Vibratory compactors, 156
Vibratory hammer test, 39

W
Water content, 3, 72, 126, 209, 229
 compact soils, 290
 nuclear device, 58
 nuclear gauges, 3
Wet density, 39
Wetting tests
 response to, 197, 209

Z
Zinc, 243