Subject Index

A

Alloy corrosion, 17
Alternating current impedance, 5
Atmospheric corrosion, data evaluation, 162

B

BASICS, electrochemical impedance spectroscopy simulation and analysis, 186
Boundary element method, 248
cathodic protection systems, 229, 277
impressed current, 265

C

CAE/CAD software, 5
Carbon dioxide containing solutions, electrode processes and surface chemistry, 67
Carbon steel, electrochemical impedance spectroscopy analysis, 197
Cathodic current density, carbon dioxide containing solutions, 67
Cathodic current-potential-rotation speed relationships, 67
Cathodic protection systems, 229
boundary element method, 248, 277
effect of critical parameters, 277
impressed current, numerical simulation, 265
Charge transfer control, 186
Cinnamaldehyde, inhibitor mechanisms, 82
Concrete, reinforcing steel in, localized corrosion, 95
Copper-nickel alloys, electrochemical impedance spectroscopy analysis, 186, 197
Corrosion, 17
alternating-current impedance spectroscopy, 5
carbon dioxide containing solutions, 67
crevise, thermal modeling, 28
data evaluation, 162
impedance, 95
macrocell current distribution, 95
polarization curves, 113
Corrosion analysis
impressed current cathodic protection system, 265
spatial corrosion modeling, 215
Corrosion monitoring, electrochemical impedance spectroscopy, 197
Corrosion rates, analysis, 174
Crack tip strain rate, 44
Crevice corrosion
data evaluation, 162
thermal modeling, 28

D

Data analysis, polarization curves, 174
Data classification, 162
Diffusion, multi-reaction polarization curves, 126

E

Electrochemical impedance spectroscopy, 186
analysis by systematic permutation of data points, 197
Electrochemistry, 5
Electrode kinetics, 5, 143
Electrode processes, carbon dioxide containing solutions, 67
Electron transfer, 126
Equivalent circuits, computer generation, 5
Erosion corrosion, electrochemical impedance spectroscopy analysis, 197
Evaluation, corrosion data, 162

F

Filming inhibitor mechanism interpretation, 82
Finite difference method
offshore cathodic protection systems, 229
spatial corrosion modeling, 215
Finite element method
offshore cathodic protection systems, 229
spatial corrosion modeling, 215
stress corrosion cracking, 44
Fretting corrosion, thermal modeling, 28

G
Galvanic corrosion
using boundary element method, 248
spatial corrosion modeling, 215

H—I
Hydrochloric acid, corrosion inhibition, 82
Impedance, 143
corrosion, 95
Impedance spectroscopy, 5
Impressed current cathodic protection systems, numerical simulation, 265
Iron-chromium alloys, corrosion, 17

L
Light water reactors, stress corrosion cracking, 44
Localized corrosion, electrochemical impedance spectroscopy, 197

M
Macrocell, current distribution, 95
Mass transport control, 186
Mathematical prediction, corrosion analysis, 215
Monte Carlo method, alloy corrosion, 17
Multiple crack initiation, 44
Multi-reaction polarization curves, 126

N—O
Nonlinear polarization, corrosion analysis, 215
Numerical techniques, cathodic protection systems, 277
Ohmic loss, multi-reaction polarization curves, 126
Oxygen diffusion, concrete resistivity, 95

P
Passivation, 17
multi-reaction polarization curves, 126
Pitting, data evaluation, 162
Polarization conditions, reinforcing bar, 95
Polarization curves, 113, 126, 143
quantitative analysis, 174
Polarization resistance, analysis, 174
POLFIT, polarization curve analysis, 174
PROCAT, 277

Q—R
Quantitative analysis, polarization curves, 174
Reactor pressure vessel steels, stress corrosion cracking, 44
Rebar, localized corrosion, 95
Redox behavior, 113
Reinforcing steel, in concrete, localized corrosion, 95
Resistance-capacitance model, validation, 197
Resistivity, concrete, 95
Rotating-disk studies, 67

S
Seawater, offshore cathodic protection systems, see Cathodic protection systems
Slip dissolution mechanism, 44
Slow strain rate test, 44
Software
BASICS, 186
CAE/CAD, 5
polarization curve analysis, 174
POLFIT, 174
PROCAT, 277
Spatial corrosion modeling, computation corrosion analysis, 215
Steel, in hydrochloric acid, corrosion inhibition, 82
Stress corrosion cracking, 44
Surface chemistry, carbon dioxide containing solutions, 67
Systematic permutation of data points, electrochemical impedance spectroscopy analysis, 197

T—U
Tafel slopes, analysis, 174
Thermal contact resistance, 28
Thermal modeling, crevice corrosion, 28
Uncompensated resistance, analysis, 174