Subject Index

A

Acoustic spectroscopy, frequency response in Ta and Nb, 358
Aluminum
 ceramic-reinforced, 76
 pure, dislocations in, 199
Aluminum-indium alloys, melting-related internal friction, 262
Aluminum-lead alloys, melting-related internal friction, 262
Aluminum-silicon alloys, internal friction, 548
Anelasticity
 ATP modeling of frequency-dependent damping, 344
 internal friction in spinels, 219
 measures for high damping materials, 316
 nonlinear, in copper-aluminum-nickel alloys, 371
Anelastic relaxation, dense zircon materials, 421
ATF modeling (see Augmenting thermodynamic fields modeling)
Attenuation
 ultrasonic, during cyclic plasticity, 199
 waves in fiber-reinforced composites, 245
 Augmenting thermodynamic fields (ATF) modeling, 344
Austenite-martensite interface, 174
Automodulation, in nonlinear anelastic solids, 191
Autotwisting, hydrogen-doped Zr-Nb alloys, 385
Axial damping, in metal-matrix composites, 282

B

Boron/aluminum, microstructure effects on damping, 158
Boron-doped silicon, hydrogen relaxation, 28
Boundary conditions, inertial, 396
Boundary motion, nonlinear damping due to, 191
Brass, phase changes and damping, 124

C

CANDU²-PHW pressure reactors, 385
Cantilevered beam, for specific damping capacity, 457
Carbon-carbon composites, damping, 490
Carbon interstitials, in steel welds, 535
Ceramic-matrix composites, damping and dynamic elastic modulus, 431
Ceramic-reinforced aluminum, damping and storage modulus, 76
Ceramics
 damping and dynamic elastic modulus, 431
 high-temperature anelastic relaxation of zircon materials, 421
Cobalt, NiCoCrAlY alloys, 447
Composite materials
 damping measurements for, 60
 damping modeling with FEM, 502
 history of damping analysis, 562
Composite structures, passive damping, 471
Copper-aluminum-nickel alloys, nonlinear internal friction in, 371
Copper-zinc-aluminum alloys, internal friction peak, 174
Correspondence principle, of linear viscoelasticity, 396
Crack, damping measurements for, 60
Creep
 susceptibility, rapid screening test for, 60
 viscoelastic materials, 60
Crystalline materials, phase changes and damping, 124
Cyclic plasticity, dislocations in pure aluminum, 199

D

Damage, damping measurements for, 60
Damping
 axial, in metal-matrix composites, 282
 carbon-carbon composites, 490
 ceramic reinforced aluminum, 76
 ceramics and ceramic-matrix composites, 431
 copper-aluminum-nickel alloys, 371
Damping—continued

crystalline materials, 124
flexural
measurement technique, 457
in metal-matrix composites, 282
frequency-dependent, ATF modeling, 344
high damping materials, measures for, 316
high polymers, 4
high-temperature, of zircon materials, 421
interlaminar shear, 471
intrinsic, and structural damping, 396
measurements
history of, 562
in metal-matrix composites, 282
nontraditional applications, 60
metal-matrix composites, microstructure effects, 158
NiCoCrAlY alloys, high-temperature measurements, 447
nonlinear, 191, 371
passive, of polymer-matrix composites and composite structures, 471
shape memory alloys, 174
thermoelastic, 94
thin-layer materials, 26, 28
tungsten carbide-cobalt, 510
Damping ratio
carbon-carbon composites, 490
for high damping materials, 316
Degradation, damping measurements for, 60
Delaminations, damping measurements for, 60
Dental alloys, melting, 124
Dielectric processes, and crystalline material damping, 124
Dislocation point defect interaction, 199
Dislocations, in plastically-cycled pure aluminum, 199
Dissipation
energy in fiber-reinforced composites, 245
and martensitic transformation, 45
Dissolution peaks, in hydrogen-doped Zr-Nb alloys, 385
Ductility, NiCoCrAlY alloys, 447
Dynamic elastic modulus
ceramics and ceramic-matrix composites, 431
high-damping alloys, 142
Dynamic mechanical analysis, damping measurements for, 60
Dynamic mechanical thermal analyzer (DMTA), 124
E
Elastic modulus
ceramic-reinforced aluminum, 76
crystalline materials, and phase changes, 124
dynamic, ceramics and ceramic-matrix composites, 431
Energy dissipation
in fiber-reinforced composites, 245
and martensitic transformation, 316
measures for high damping materials, 316
Entropy, irreversible heat transfer-related, 94
Environmental conditions, damping measurements for, 60
Epoxy-aluminum composites, damping, FEM, 502
Experimental techniques, for damping measurement, 282
F
FEM (see Finite element method)
Ferroelectric processes, and crystalline material damping, 124
Fiber-reinforced composites, wave attenuation in, 245
Finite element analysis, ATF modeling of frequency-dependent damping, 344
Finite element method, composite materials damping, 502
Flexural damping
measurement technique, 457
in metal-matrix composites, 282
Flexural vibrations, of Bernoulli-Euler beam, 94
Forward martensitic transformation, internal friction peak during, 174
Free-free beam, for specific damping capacity, 457
Frequency-dependent damping, ATF modeling of, 344
G
Gamma peak, in Ta and Nb, 358
Gamma peak annealing, in Ta and Nb, 358
Glass ceramic composites, internal friction, 525
Graphite/aluminum, microstructure effects on damping, 158
Graphite/epoxy, wave attenuation in, 245
Graphite/magnesium, microstructure effects on damping, 158
Heat transfer, irreversible, and thermoelastic damping, 94
HIDAMETS, damping properties, 142
High damping materials
alloys, damping properties, 142
augmenting thermodynamic fields (ATF) modeling method, 344
ceramic-reinforced aluminum, 76
martensitic transformations, 45
measures for, 316
metals, damping properties, 142
High polymers, damping, 4
High-temperature properties
anelastic relaxation of zircon materials, 421
ceramics and ceramic-matrix composites, 431
glass ceramic composites, 525
in NiCoCrAlY alloys, 447
Hydrogen
in boron-doped silicon, 28
reorientation relaxation in metallic glasses, 28
Snoek peak in V-Nb, 227
Hydrogen cold work peak, in Ta and Nb, 358
Hydrogen-doped Zr-Nb alloys, internal friction and Young's modulus, 385
Hygrothermal effect, 471

Indium-thallium alloys, nonlinear damping, 191
Inertial boundary conditions, for damping of a Timoshenko beam, 396
Interfacial debonds, damping measurements for, 60
Interlaminar shear damping, 471
Intermetallics, NiCoCrAlY alloys, 447
Internal friction
aluminum-silicon alloys, 548
ceramics and ceramic-matrix composites, 431
epoxy-aluminum composites, FEM, 502
flexural damping measurement, 457
graphite/epoxy composites, 245
history of damping analysis, 562
hydrogen-doped Zr-Nb alloys, 385
indium-thallium alloys, 191
isothermal, 358
low-frequency, 548
measures for high damping materials, 316
melting-related, in Al-In and Al-Pb alloys, 262
metal-matrix composites, 282
NiCoCrAlY alloys, 447
nonlinear, in copper-aluminum-nickel alloys, 371
peak during martensitic transformation, 174
silicon-carbon/glass ceramic composites, 525
spinels, 219
strain-aging of steel welds, 535
Ta and Nb, acoustic spectroscopy, 358
tungsten carbide-cobalt, 510
V-Nb alloys, 227
zircon materials, 421
Internal state variables, and ATF modeling, 344
Internal stress
ceramic-reinforced aluminum, 76
epoxy-aluminum composites, FEM, 502
graphite/epoxy composites, 245
high-damping alloys, 142
high polymers, 4
history of damping analysis, 562
martensitic transformation-related, 45
microstructure effects on metal-matrix composites, 158
premartensitic copper-aluminum-nickel alloys, 371
silicon-carbon/glass ceramic composites, 525
Snoek peaks in V-Nb alloys, 227
strain-aging of steel welds, 535
in thermoelastic damping, 94
thin-layer materials, 28
tungsten carbide-cobalt, 510
Interstitials, C and N, in steel welds, 535
Inverse quality factor, for high damping materials, 316
Inversion phenomenon, in synthetic spinels, 219
Iron, phase changes and damping, 124
Irreversible heat transfer, and thermoelastic damping, 94
Isochronal damping spectra, high-purity Ta and Nb, 358
Isothermal damping spectra, high-purity Ta and Nb, 358

Laminates
composite, wave attenuation in, 245
damping theories, 471
passive damping, 471
Leaded alpha brass, phase changes and damping, 124
Linear viscoelasticity, correspondence principle of, 396
Log decrement, for high damping materials, 316
Loss factors
- epoxy-aluminum composites, 502
- for high damping materials, 316

M

Magnesium-aluminum-oxygen synthetic spinels, internal friction, 219
Manganese transformation, near Curie point, 124
Manganese-copper-based alloys, damping properties, 142
Martensitic transformation and dissipation processes, 45
- high damping materials, 45
- internal friction peak during, 174
Material damping (see Damping)
Matrix-particle interface, aluminum-silicon alloys, 548
Mechanical deformation, high polymers, 4
Melting
- in Al-In and Al-Pb alloys, internal friction of, 262
- dental alloys, 124
Metallic films, grain-boundary sliding in, 28
Metal-matrix composites
- axial and flexural damping, 282
- damping and storage modulus, 76
- microstructure effects on damping, 158
- thermoelastic damping, 94
Microheterogeneous systems, aluminum-silicon alloy, 548
Microstructure
- carbon-carbon composites, 490
- and damping in metal-matrix composites, 158
- and martensitic transformation, 174
- phase change effects in crystalline materials, 124
Morphology, effects on damping, FEM, 502

Nickel
- NiCoCrAlY alloys, 447
- phase changes and damping, 124

Niobium
- frequency response, isothermal and isochronal measurement, 358
- nitrogen Snoek peak, hydrogen effects, 227
- oxygen Snoek peak, hydrogen effects, 227

Nitinol
- Premartensitic copper-aluminum-nickel alloys, nonlinear damping, 371

Nondestructive testing, damping measurements for, 60
Nonlinear damping, 191
Nonlinear internal friction, nonlinear, 371

O

Order-disorder processes, crystallographic, 124
Oxygen, Snoek peak in V-Nb
- hydrogen effects, 227
- substitutional alloying effects, 227

P

Partial temperature cycling programs, 174
Particulate-reinforced aluminum, damping and storage modulus, 76
Passive damping, polymer-matrix composites and composite structures, 471
Phase lag, for high damping materials, 316
Phase transformations
- and damping in crystalline materials, 124
- melting-related internal friction in metal matrix alloys, 262
Piezoelectric ultrasonic composite oscillator technique (PUCOT), 124, 431
Plastic deformations, in pure aluminum, ultrasonic measurements, 199
Point defects, relaxation in thin-layer materials, 28
Polymer-matrix composites, passive damping, 471
Precipitation, in manganese-copper alloys, 124

Q

Quality control, damping measurements for, 60
INDEXES 579

R

Relaxation
anelastic
of dense zircon materials, 421
in V-Nb alloys, 227
mechanisms, 28
microstructure effects on metal-matrix
composites, 158
in nonstoichiometric synthetic spinels, 219
viscoelastic materials, 60
Residual stress, microstructure effects on
metal-matrix composites, 158
Resonant frequency, carbon-carbon
composites, 490
Reverse martensitic transformation,
internal friction peak during, 174

S

Second law of thermodynamics, and
thermoelastic damping, 94
Shape memory alloys, internal friction
peak, 174
Silicon
boron-doped, hydrogen relaxation, 28
point-defect reorientation, 28
Silicon-carbon/glass ceramic composites,
internal friction, 525
Snoek peaks
C and N interstitials in steel welds, 535
in V-Nb alloys, 227
SONOSTON, damping properties, 142
Specific damping capacity
for high damping materials, 316
measurement, 457
Spinels, internal friction in, 219
Steel welds, strain-aging, 535
Stiffness, high-damping alloys, 142
Storage modulus, ceramic-reinforced
aluminum, 76
Strain-aging, of steel welds, 535
Strain amplitude dependence
of high-damping alloys, 142
metal-matrix composites, 158
Stress-strain distribution, epoxy-aluminum
composites, FEM, 502
Structural damping
and material damping, 396
viscoelastic, exact solution for, 396
Structural testing, damping measurements
for, 60
Superalloys, NiCoCrAlY alloys for, 447

T

Tantalum, frequency response, isothermal
and isochronal measurement, 358
Temperature, phase changes in crystalline
materials, 124
Terminal solid solubility, hydrogen-doped
Zr-Nb alloys, 385
Thermal expansion, mismatch in
aluminum-silicon alloys, 548
Thermoelectric damping and irreversible
heat transfer, 94
Thermoelectric damping, high-damping
metals, 142
Thick composites, passive damping, 471
Thin composites, passive damping, 471
Thin-layer materials, damping mechanisms,
28
Timoshenko beam, solution to, 396
Toughness, tungsten carbide-cobalt, 510
Tungsten carbide-cobalt, internal friction
measurements, 510

U

Ultrasones
dislocations in plastically-cycled pure
aluminum, 199
PUCOT technique, 124
wave attenuation in graphite/epoxy
composites, 245
Uniaxial stress
thermodynamic inclusion under, 94
thermodynamic interface under, 94
Unidirectional composites, passive
damping, 471
Uranium alloys, phase changes effects on
damping, 124

V

Vanadium
nitrogen Snoek peak, hydrogen effects,
227
oxygen Snoek peak, hydrogen effects,
227
Vanadium-niobium alloys
hydrogen Snoek peak, 227
oxygen Snoek peak, substitutional
alloying effects, 227
Velocity, ultrasonic, during cyclic
plasticity, 199
Vibrating-membrane configuration, in thin-
layer studies, 28
Vibrating-string configuration, in thin-layer
studies, 28
Vibration testing, carbon-carbon composites, 490
Viscoelasticity, linear, correspondence principle of, 396
Viscoelastic materials, damping measurements for, 60
Viscoelastic structural damping, exact solution for, 396

W

Welds, steel, strain-aging, 535

Y
Young's modulus, in hydrogen-doped Zr-Nb alloys, 385

Z
Zinc-aluminum foundry alloys, damping properties, 142
Zircon-based materials, high-temperature anelastic relaxation, 421