Subject Index

A

Acetic acid, conductivity, 23
Adhesive bond, 328
Aerosol containers, internally coated, 428
Aluminum
 amphoterism, 205
 anodized
 impedance, 37
 statistical process control, 313
 corrosion, 1
 EIS evolution during porous anodic film sealing, 255
 inhibition, silicate polymerization effect, 205
 thin films, corrosion, 276
Aluminum alloys, localized corrosion, detection and monitoring, 297
Aluminum/methanol systems, impedance data, 154
Aluminum/methanol/water systems, impedance data, 154
Aluminum oxide film, 276
Aluminum/polymer laminates, equivalent circuit modeling, 328
Amino-trimethyl phosphonic acid, 192
ANALEIS, 37
Anodic reactions, 9
Anodizing, process control, 313
Artifacts, 73

Cathodic disbonding, 407
Cathodic protection, zinc-rich paints, 438
Cathodic reactions, 9
Charge transfer control, 37
Charge transfer kinetics, 9
Chi-square, 428
Chronoamperometry, 450
Circuit models, 23
 aluminum/polymer laminates, 328
 corroding film-covered metal, 173
 corrosion prediction, 192
 parasitic conduction pathways, 73
 RC model, 54
Coatings
 accelerated testing, 463
 improved testing and evaluation, 463
 internally coated steel aerosol containers, 428
 loss of adhesion, 407
see also Paints
CO₂ corrosion, 237
Concrete, steel in, 1
 counter electrode polarization effects, 365
 electrochemical impedance and harmonic analysis, 384
Container service lifetime, 428
Copper-nickel alloys, corrosion resistance, 220
Corrosion, 1
 aluminum, 1
 thin films, 276
 differential, carbon steels, 237
 electrochemical impedance spectroscopy, data analysis, 37
 film-covered metals, 173
 high impedance systems, 154
 local
 buried structure, 347
 detection and monitoring, 297
 model polarization curves, 9
 monitoring, 54, 347
 potential
 electrochemical noise, 205
 steel in concrete, 384
 prediction from circuit models, 192

B

Barrier stages, zinc-rich paints, 438
Bode magnitude, 428
Bode phase, 428
Bode plots, 255
Breakpoint method, 407
Buried structure, electrochemical impedance, 347

Capacitance, double layer, 407
Carbon steels, differential corrosion, 237

Copyright © 1993 by ASTM International www.astm.org
Corrosion (cont.)
rate, steel in concrete, 384
resistance
copper-nickel alloys, 220
extremes, 428
steel in concrete or soil, 1
Corrosion inhibitors, 1
carbon steel in seawater, 237
high-performance protective coatings, 450
silicate polymerization, 205
testing and evaluation, 192, 463
Corrosion-product film, corrosion resistance, 220
Counter electrode, polarization effects, 365
Cracking, stress-corrosion, 94
Crosslinking, 463
Cure, coatings, 463
Current
distribution, 365
primary and secondary distribution, 347

D
Dealloyed layers, coarsening characterization, 94
Deconvolution, Kramers-Kronig transformation, 115
Diffusional impedance, aluminum thin film corrosion, 276
Distributed parameter system, 347

E
Electrochemical impedance spectroscopy
aluminum anodizing statistical process control, 313
aluminum/polymer laminate equivalent circuit modeling, 328
aluminum thin film corrosion characterization, 276
analysis by systematic permutation of data points, 54
counter electrode polarization effects of steel in concrete, 365
data analysis, corrosion, 37
electrochemical noise, 205
evolution during porous anodic film sealing on aluminum, 255
evolution during porous anodic film sealing on aluminum, 255
high-performance protective coatings, 450
improved testing and evaluation of coatings, 463
internally coated steel aerosol containers, 428
interpreting from segmented electrode arrangements, 237
Kramers-Kronig relations application, 115
localized corrosion, detection and monitoring, 297
loss of adhesion of organic coatings, 407
parasitic conduction pathways, 73
steel in concrete, 384
validation by Kramers-Kronig transformation, 140
zinc-rich paint protection mechanisms, 438
Electrochemical noise, inhibitor system study, 205
Electrodes
impedance, low conductivity media, 23
kinetics, polarization curves, 9
porous, coarsening of dealloyed layers, 94
segmented arrangements
EIS interpretation, 237
Electrolyte resistance, 23
Equivalent circuits, see Circuit models
Error structure, frequency-dependent, 115

F
Faradaic relaxation phenomena, 23
Film-covered metals, impedance, 173
Film-induced cleavage, coarsening of dealloyed layers, 94
Films
corrosion-product, 220
hydration, 255
porous anodic sealing, EIS evolution during, 255
surface, corrosion, 173
unstable, electrochemical noise, 205
Fusion-bonded epoxy
evaluation, 450
loss of adhesion, 407

G
Galvanic effects, 237
Harmonic analysis, steel in concrete, 384
High impedance systems, data validation using Kramers-Kronig transformation, 154
Hydration, open circuit potential, 276
Hydrothermal sealing, porous anodic films on aluminum, 255

Impedance spectra, calculated from polarization curve, 9
Interface modeling, 54
Interface regulating device, Kramers-Kronig transformation relation, 140
Iron, corrosion inhibitor evaluation, 192

Kramers-Kronig transformation, 1
application in EIS, 115
high impedance system data validation, 154
relation to interface regulating device, 140

Laminates, equivalent circuit modeling, 328
Low conductivity media artifacts, 73
electrode impedance, 23
parasitic conduction pathways and EIS measurements, 73
Luggin capillary, 23

Marine-service epoxy, evaluation, 450
Mass transfer control, 37
Measurement models, Kramers-Kronig transformation, 115
Measuring area, 347
Metal coatings, 1
Metal matrix composites, localized corrosion, detection and monitoring, 297
Metals, film-covered, impedance, 173
Metastable pitting, 276

Nitrate, aluminum inhibition, 205
Nyquist plots, 428
Nyquist representation, 54

Organic coatings, loss of adhesion, impedance, 407
Oxide capacitance and resistance, 276

Paints
improved testing and evaluation, 463
zinc-rich, protection mechanisms, 438
Palladium sputter-coating, corrosion product, 220
Parasitic conduction pathways, electrochemical impedance spectroscopy, 73
Passivation, Kramers-Kronig transformation, 140
Passivity, 276
Permutation technique, 54
Phase angle, 297
Pipelines electrochemical impedance, 347
loss of adhesion of organic coatings, 407
Pit capacitance, 276
Pitting, 37, 297
Polarizability, 365
Polarization curve, impedance spectra calculated from, 9
Polarization resistance, 347
corrosion prediction, 192
Polyimide, evaluation, 450
Polymer coatings high-performance, 450
impedance behavior, 37
loss of adhesion, impedance, 407
Pore electrolyte, corrosion-product film, 220
Potential distribution, impedance measurements, 23
Potentiodynamic polarization, aluminum anodizing statistical process control, 313
Pretreatment, coatings, 463
R

Repassivation, 276
Rotating cylinder electrode, 192

S

Salt spray test, 313
Silicate polymerization, aluminum inhibition, 205
Simulation, ANALEIS, 37
Sodium chloride, concrete effects, harmonic analysis, 384
Software, ANALEIS, 37
Stability, Kramers-Kronig transformation, 140
Steel
 cathodic protection, zinc-rich paints, 438
 in concrete
counter electrode polarization effects, 365
electrochemical impedance and harmonic analysis, 384
 in soil, corrosion, 1
corrosion inhibitor evaluation, 192
 internally coated aerosol containers, 428
loss of adhesion of organic coatings, 407
 in water, artifacts, 73
 Stern-Geary constant, 384
 Stress-corrosion cracking, correlation with coarsening of dealloyed layers, 94
 Surface diffusion, coarsening of dealloyed layers, 94
 Surface films, corrosion, 173

T

Tafel slopes, 384
Theta phase precipitates, 276
Transmission line theory, 328
Transpassive dissolution, Kramers-Kronig transformation, 140

V

Validation criterion, Kramers-Kronig transformation, 140

W

Weld corrosion, 237
Welded joints, differential corrosion, 237

Z

Zinc-rich paints, protection mechanisms, 438