Subject Index

A
Anisotropic constitutive relations, 151
Anisotropy damage, 326
Antielastic bending, 204
Arthroplasty, hip, 429
ASME code, 298, 412
Autofrettage of pressurized components, 375
Axial torsion strain cycling, 85
Axial-torsional fatigue, 133, 313

B
Biaxial loading, 429
Bauschinger effect, 298
Biaxial fatigue
 bending test methods, 204
 cracking behavior, 151
 cyclic deformation, 151, 259
 damage assessment, 7
 life prediction models, 151
 low-cycle, 313
 mean stress effect, 55
 strain energy parameters, 67
 test methods, 204
 test results, 168(table)
 triaxiality factor, 85
Biaxial stress-strain behavior, 37

C
Carbon steel, 298
Cobalt-base superalloy, 133
 mechanical properties, 137–138(tables)
Composite material, 429
Compressional-compression fatigue, 429
Constitutive equations, 375
Constraint factor, 55, 397
Crack initiation, 313, 326
Crack nucleation, 7, 326
Crack propagation, 313
Crack stability, 359
Cracking behavior
 cyclic deformation, 151
 low-cycle fatigue, 313
 mean stress effect, 55
 test methods, 204
Cracks, 55
Creep-fatigue interaction, 107
Creep strain, 397
Critical element model, 429
Critical plane approach, 37
Critical plane damage models, 7
Cross hardening, 259
Cyclic deformation, 7, 151, 259
Cyclic fatigue
 life prediction, 67
 loading, 55, 298
 multiaxial fatigue life, 37, 298
 stress-strain modeling, 67
Cyclic hardening, 259, 375
Cyclic plasticity, 273
Cyclic softening, 375
Cyclic stress-strain, 151, 273, 298

D
Damage accumulation, 107
Damage criteria, 37, 273, 326
Damage measurements, 183
Damage models, 7
Deformation behavior, 107, 223, 244
Deviatoric invariants, 223
Distortion strain energy, 55

E
Elastic finite element analysis, 397
Elastic plastic analysis, 412
Elastic plastic strain life
 at elevated temperatures, 85
Elastic-plastic stress-strain behavior, 37
Elastic strain, 397
Elevated temperature, 133, 223
Experimental multiaxial fatigue studies, 2
 overview
Extra hardening, 259

F
Factorial design, 359, 363–365(tables)
Failure cycles, 74–79(figs.)
Failure models, 7
Fatigue
 analysis, 85
 behavior, 67, 204, 345
 crack nucleation, 7, 326
Fatigue—continued
 damage, 7, 183, 273, 326, 429
 evaluations of pressure vessel components, 412
 failure criterion, 55
 fracture, 67
 life models, 1, overview, 133
 life prediction, 37, 313
 materials, 359
 mean-stress effect, 55
 modelling, 37
 resistance, 120
 strain-energy parameters, 67
 stress-strain predictions, 273
 Fatigue data, 95(table)
 Fatigue limit, 120
 Fatigue of notched components, 3, overview
 Follow-up, strain estimates, 397
 Fracture mechanics, 359

G

Gloss analysis, 397

H

Hardening, 259, 273, 298
 Hastelloy X, 223, 225(table), 234(table)
 High-cycle multiaxial fatigue
 macro-micro approach, 120
 High-strength steel, 345
 High temperature, 313
 Hip prostheses, 429

I

Inelastic strain estimates, 397
 In-phase loading, 55, 67, 133
 Irreversible plastic strain, 259
 Isothermal fatigue experiments, 133
 Isotropic-kinematic hardening, 37

K

Kinematic hardening, 273

L

Life prediction
 axial-torsional creep behavior, 133, 151
 composite hip prostheses, 429
 cyclic deformation, 151
 damage evaluation, 273
 fatigue, 67, 82(figs), 273, 313
 multiaxial creep fatigue, 107
 pressure vessel components, 412
 Linearized stresses, 412
 Loading, 67, 107, 244, 345, 412
 Low carbon steel, 326, 327(table), 330–331(tables)
 Low-cycle fatigue, 397, 412
 Low-cycle fatigue tests, 183, 204, 326

M

Macro-micro approach, 120
 Macroscopic cracks, 55
 Master life curve, 55
 Material-dependent failure models, 7
 Material properties for damage
 accumulation type 304 stainless steel, 113(table)
 Mean stress, 55
 Metal fatigue, 326
 Micro/macro
 crack growth studies, overview, 3
 high-cycle fatigue, 120
 Microcrack density, 326
 MITI (Japanese) code, 412
 Mixed-mode fatigue, 345
 Models
 fatigue damage assessment, 7
 multiaxial stress-strain, 37
 Monte Carlo simulation, 183
 Multiaxial
 creep-fatigue interaction, 107
 damage observation, 326
 fatigue
 damage assessment, 7
 high cycle, 120
 hip prostheses, 429
 inelastic stress strain predictions, 273
 life prediction, 67
 mean stress effect, 55
 fatigue damage evaluation, 273
 load-notch strain approximation, 375
 loading, 244
 low-cycle fatigue, 183, 326, 412
 pressure vessel components, 412
 stress-strain model, 37
 test methods, 204
 torsional fatigue behavior, 133
 Multiaxial stresses, 298
 Multisurface stress-strain predictions, 273

N

Neutral loading, 273
 Nonlinear strain hardening, 298
 Nonproportional loading, 273
 Normality flow rule, 273
Notch strains, 375, 397
Numerical experiments, 259

Out-of-phase loading, 67, 133
Overstress, 107, 259
Oxidation, 183

Path dependence, 259
Peak stresses, 412
Plastic deformation, 55, 259
Plastic strain, 85, 259, 397
Plasticity, incremental, 298
Plasticity models, 290(table)
Polymeric composite materials, 429
Predictive models, 345
Pressure vessel codes, 412
Pressurized thin-walled cylinders, 359
Principal strain ratio, 55
Proportional loading, 37

Ratchet assessment diagrams, 298
Relaxation modulus, 397
Residual stresses, 375
Rhombic plate, 204

Schmid law, 244
Sequential tests, 183
Shear strain, 7, 223
Single crystal superalloys, 244
Slip lines/slip bands, 7, 244
Steel, high-strength, 345, 347(table)
Stainless steel
 type 304, 107, 259, 298, 313
 type 316, 183
Strain concentration factor, 412

Strain estimates
 fatigue analyses, 273
 gloss analysis, 397
Stress relaxation process, 397
Stress-strain
 behavior, 2, overview, 7, 273
 biaxial, 37
 fatigue analyses, 273
 mean stress effect on fatigue life, 55
 model, 37
 multiaxial fatigue life, 67, 273
Superalloy single crystal, 244, 245(table)

Temperature, elevated
 fatigue behavior, 133
Tension-torsion loading, 244
Tension-torsion low-cycle fatigue, 326
Thermal fatigue, 107
Thermomechanical loading, 107
Thermomechanical testing, 223
Thermoviscoplasticity, 107
Thin cylinder failure, 359
Torsional loading, 223
Transition cycle, 85
Triaxiality factor, 85
Turbine blades—materials, 244
Two-surface stress strain predictions, 273

Uniaxial cyclic fatigue data, 67

Variable amplitude test, 37
Virtual strain energy, 67
Viscoplasticity, 259
von Mises yield surfaces, 273

Z-parameter, 85