Subject Index

A

ABAQUS, 373
Alumina, 228
 coarse-grained, 161
Arrhenius law, 360

B

Batdorf's theory, 390
Bending, 84, 98
 configuration, 250
Bootstrap ratio techniques, 291
Bridging interactions, 161
Brittle materials, 143

C

CARES, 390
Cavities, 127
Ceramic Technology Program,
 3
Competing risk, 3
Component reliability, 291
Composites
 ceramic matrix, 175
 continuous fiber reinforced, 207
Compression, 84
Confidence intervals, 291
Constitutive equations, 62
Continuum damage mechanics,
 207, 373
Crack growth, 98, 127
 slow, 309
 subcritical, 161, 228, 390
Cracking, 84
Creep, 19, 127, 373
 damage, 207
 deflection, 84
 life prediction, 207
 modeling, 360
 rupture, 36, 62, 207, 309
C-ring tests, 333

D

Damage, continuum, 373
Defect density, 192
Defect distributions, 280
Deformation
 creep-induced, 19
 high temperature, 360

E

Elemental strength concept, 175

F

Failure, delayed, 161
Failure, multiaxial, 265, 280
Failure predictions, 175
 probability, 112, 333, 346
 weakest link, 192
Failure properties, 112
Failure theories, 143, 280
Fatigue, cyclic, 161
Fatigue, dynamic, 228
Fatigue life prediction, 98
Fatigue parameter estimation, 390
Fatigue, static, 161
Finite element analysis, 143,
 309, 333, 360
Flaw distribution, 112
Flaw strength, 175
Flexure tests, 84, 228
Fracture, 19, 127, 280
 analysis methodology, 265
 local risk, 346
 mechanism maps, 36
 mixed mode, 192
 strength, 250
 stresses, 228

G

Gaussian quadrature, 143
412 CERAMIC MATERIALS

H
- Heat exchanger tubes, 373
- Pooled strength data, 265, 291
- Porosity, 192
- Probabilistic design, 280
- Methods, 291
- Proof testing, 346, 390

L
- Likelihood ratio techniques, 291
- Linear regression, 250
- Loading, 98
 - Constant, 161
 - Cyclic, 19, 161
 - Factors, 265
 - Multiaxial, 346
 - Proof test, 390
 - Thermomechanical, 62
- Multiaxial fracture modes, 265
- Multiaxial loading, 346
- Multiaxial strength, 192
- Multiaxial stress, 280

M
- Machining, 3
- Maps, fracture mechanisms, 36
- Maximum likelihood technique, 250
- Mechanical testing, 3
- Modeling
 - Computer, stress distribution, 333
 - Creep, 360
 - Micromechanical, 207
 - Multiaxial, 175
 - Weakest link, 192
 - Weibull, 112
- Modulus of rupture, 127
- Multiaxial fracture modes, 265
- Multiaxial loading, 346
- Multiaxial strength, 192
- Multiaxial stress, 280

N
- Neutral axis, 84

O
- O-ring tests, 333

P
- Plane stress approximation, 333
- Scale factors, 175
- Scanning electron microscopy, 175
- Silicon carbide, 309, 373
- Silicon nitride, 3, 36, 62, 112
 - Creep, 360
 - Hot isostatic pressed, 127
 - Hot-pressed, 84, 98
 - Sintered, 19
 - Structural, 291
- Statistical analysis, 112
- Stiffness, 84
- Strain gaging, 3
- Stress data analysis, 280
- Strength degradation, 228
- Strength, multiaxial, 192
- Strength parameters, 291
- Stress allowables, 36
- Stress, applied, 19
- Stress averaging, Weibull, 390
- Stress dependence, 207
- Stress distribution, 333
- Stress, multiaxial, 265
 - Failure theories, 280
- Stress volume, 265
- Structural reliability, 36
- Surface wave acoustic microscopy, 127
T

Tensile creep, 19, 127
Tensile fatigue, 19, 98
Tensile strength, 3, 127
Tension, 84
Thermomechanical loading, 62
Time-temperature stress
dependence, 127
Tubers, heat exchanger, 373
Tubular components, 309, 333

Weibull analysis, 3, 112, 280
Weibull distribution, 175
Weibull estimators, 250
Weibull modulus, 228
Weibull statistics, 309, 373
Weibull strength parameters, 291
Weibull stress averaging method, 390
Weibull probability, 143, 346
Weibull uniaxial model, 265

W

Weakest link models, 192
fracture statistics, 265

Y

Yttria, 3, 360