Subject Index

A

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiotic loss</td>
<td>412, 422</td>
</tr>
<tr>
<td>Accelerated bioconcentration test</td>
<td>573-584</td>
</tr>
<tr>
<td>Acid-mine waste</td>
<td>189-202, 273-289</td>
</tr>
<tr>
<td>Acid rain</td>
<td></td>
</tr>
<tr>
<td>and Atlantic salmon</td>
<td>251-258</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>251-254</td>
</tr>
<tr>
<td>Acton Lake, Ohio</td>
<td>47, 48(illus)</td>
</tr>
<tr>
<td>Adaptation</td>
<td></td>
</tr>
<tr>
<td>bacteria</td>
<td>59-68</td>
</tr>
<tr>
<td>microorganisms</td>
<td>56</td>
</tr>
<tr>
<td>Aerobic/anaerobic conditions, lakes</td>
<td>72-81</td>
</tr>
<tr>
<td>Alcaligenes plasmids</td>
<td>61-62, 64</td>
</tr>
<tr>
<td>Alcohols</td>
<td></td>
</tr>
<tr>
<td>and octanol/water partition coefficient</td>
<td>470-488</td>
</tr>
<tr>
<td>QSAR model</td>
<td>470-488</td>
</tr>
<tr>
<td>tadpole narcosis</td>
<td>470-488, 472-473(table)</td>
</tr>
<tr>
<td>Algae</td>
<td></td>
</tr>
<tr>
<td>Champtia parvula, 161-172</td>
<td></td>
</tr>
<tr>
<td>in standardized aquatic microcosm</td>
<td>353-367, 368-393</td>
</tr>
<tr>
<td>biovolume</td>
<td>382</td>
</tr>
<tr>
<td>and toxicity of</td>
<td></td>
</tr>
<tr>
<td>chromium</td>
<td>537-547</td>
</tr>
<tr>
<td>silver, 5-17</td>
<td>13(table)</td>
</tr>
<tr>
<td>sulfate</td>
<td>537-547</td>
</tr>
<tr>
<td>wastewater</td>
<td>161-172</td>
</tr>
<tr>
<td>Amelia River, Florida</td>
<td>160, 161(illus)</td>
</tr>
<tr>
<td>Ammonia</td>
<td></td>
</tr>
<tr>
<td>toxic contaminant</td>
<td>172</td>
</tr>
<tr>
<td>Ammunition manufacturing</td>
<td></td>
</tr>
<tr>
<td>wastewater biomonitoring</td>
<td>215-229</td>
</tr>
<tr>
<td>Analysis of variance (ANOVA)</td>
<td>323-337</td>
</tr>
<tr>
<td>standardized aquatic microcosm</td>
<td>383-384, 388(table), 391</td>
</tr>
<tr>
<td>Anesthesia of target organism (see Narcosis)</td>
<td></td>
</tr>
<tr>
<td>Anesthetics</td>
<td></td>
</tr>
<tr>
<td>and octanol/water partition coefficients</td>
<td>470-488</td>
</tr>
<tr>
<td>QSAR model</td>
<td>475</td>
</tr>
<tr>
<td>tadpole narcosis</td>
<td>475, 476-477(table)</td>
</tr>
<tr>
<td>Aniline derivatives</td>
<td></td>
</tr>
<tr>
<td>structure-activity analysis</td>
<td>492-495</td>
</tr>
</tbody>
</table>

Arbacia punctulata

- *sperm cell test*, 233, 245-248

Aromatic amines

- structure-activity relationships, 492-495

ASTM-PROBIT

- 303-307, 308-320

ASTM Standard E

- 729-80: 192

Atlantic salmon

(see Salmon, Atlantic)

B

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
</tr>
<tr>
<td>and adaptation to chlorobenzoate</td>
<td>59-68</td>
</tr>
<tr>
<td>plasmids</td>
<td>61-62, 64</td>
</tr>
<tr>
<td>Bass, striped</td>
<td></td>
</tr>
<tr>
<td>population survival</td>
<td>293-297</td>
</tr>
<tr>
<td>Benthic invertebrates</td>
<td></td>
</tr>
<tr>
<td>in Middle Atlantic Bight</td>
<td>107</td>
</tr>
<tr>
<td>polychaetes</td>
<td>111-113</td>
</tr>
<tr>
<td>and polychlorinated biphenyl uptake</td>
<td>111-113</td>
</tr>
<tr>
<td>and sewage contaminants</td>
<td>103, 109-111, 178, 183-184</td>
</tr>
<tr>
<td>stream survey</td>
<td>178, 183-184</td>
</tr>
<tr>
<td>Benzene derivatives</td>
<td></td>
</tr>
<tr>
<td>Microtox analysis</td>
<td>424-440, 427-431 (tables)</td>
</tr>
<tr>
<td>and octanol/water coefficients</td>
<td>424-440</td>
</tr>
<tr>
<td>toxicity prediction</td>
<td>424-440</td>
</tr>
<tr>
<td>Bioassays (see also Microtox)</td>
<td></td>
</tr>
<tr>
<td>acute toxicity studies</td>
<td>551-563</td>
</tr>
<tr>
<td>chronic toxicity studies</td>
<td>211-212</td>
</tr>
<tr>
<td>submitochondrial electron transfer particles (SMP)</td>
<td>551-563</td>
</tr>
<tr>
<td>Biochemical oxygen demand (BOD)</td>
<td>463-465</td>
</tr>
<tr>
<td>Bioconcentration factor (BCF)</td>
<td>573-584</td>
</tr>
<tr>
<td>Biodegradation</td>
<td></td>
</tr>
<tr>
<td>organic chemicals</td>
<td></td>
</tr>
<tr>
<td>butyl benzyl phthalate</td>
<td>19-39, 31, 33, 34-35(tables)</td>
</tr>
<tr>
<td>prediction of, 459-467, 462(illus)</td>
<td></td>
</tr>
<tr>
<td>surfactants</td>
<td>41, 47, 49-50, 52-55(tables)</td>
</tr>
<tr>
<td>Biogeochemistry</td>
<td></td>
</tr>
<tr>
<td>of silver</td>
<td>5-17</td>
</tr>
<tr>
<td>of surfactants</td>
<td>41-57</td>
</tr>
</tbody>
</table>
Biomonitoring methods
submitochondrial electron transfer particles, 551–563
ventilatory tests on fish, 215–229
Bloody Run Creek, New York, 60, 61(illus)
Bluegill sunfish
acute toxicity testing, 215–229
use in biomonitoring, 215–229
ventilatory behavior, 215–229
Blue mussels, 87, 91(table)
Brass dust, 354–365
Breslow test, 323–337
Butyl benzyl phthalate
biodegradation of, 19–39, 31, 33, 34–35(tables)
Cadmium, 189–202, 209–210(tables), 210, 567–568, 569(table)
Calcium
wastewater contaminant, 133–135
Carbofuran, 94, 97(table), 97–100
Carbon
and soil decontamination, 94–100
Censoring of data, 321–337
fixed right, 322
withdrawal, 322
Ceriodaphnia dubia
chronic endpoint study, 273–287
intrinsic rate of population increase, 273–287
Champia parvula (see Algae)
Chemical fractionation of wastewater, 123, 125–128, 126–127(illus), 143(illus), 144, 152–154, 157
Chemical shift
substituent-induced, 422–440
Chemicals (see also individual chemicals, i.e., Butyl benzyl phthalate)
biocorrection factor (BCF), 573–589
biodegradability of, 463–464
butyl benzyl phthalate, 19–39, 31, 33, 34–35(tables)
prediction of, 459–467, 462(illus)
surfactants, 41, 47, 49–50, 52–55(tables)
endpoints, 446–447(tables), 450–453
in lake mud-water interface, 72–81, 74–78, 80(tables)
LC50, fish, 554–555(tables)
Microtox bioassay, 554–555(tables)
monoaromatic, 410–422
no-effect concentration, 441–456, 446–447(tables)
priority testing of, 508–534
scoring of, 508–515
screening of, 508–534
submitochondrial electron transfer bioassay, 554–555(tables)
substructures of, 515–526, 528, 530–531(table), 533–534
wastewater fractionation and characterization, 123, 125–128, 144, 152–154, 147
Chlordane
in ocean-dumped sewage sludge, 111–117
Chloride
wastewater contaminant, 133–135
Chlorobenzoate
bacterial adaptation to, 59–68
Chlorpyrifos, 94, 96(table), 97–100
Cholinesterase inhibitors, 397–408
Chromium, 209–210(tables), 210, 537–547
Chronic endpoints
chemicals
literature review, 442–456, 446–447(tables), 450–453(tables)
extrapolation from fisheries science, 289–299
fecundity
Ceriodaphnia, 286(table), 286–287, 296
intrinsic rate of population increase, 273–287
regression analysis of, 268–271
Coal mine waste
stream water/sediment toxicity, 204–212
Computer
programs
ASTM-PROBIT, 303–307, 308–320
COMPUTOX, 427
DULUTH-TOX, 308–320
for Latin hypercube sampling, 340–348
LC50 estimation, 308–320
LD50 estimation, 303–307
for population survival analysis, 322–337
for probit analysis, 303–320, 319(table)
Random-Walk, 340–348
SAS-PROBIT, 308–320
systems (see also Data bases; Mathematical modeling; Structure-activity relationships) early warning biomonitoring, 217, 219(illus) for groundwater solute transport, 340–348 for modeling two-compartment bioconcentration factor, 575–579 for salinity simulation, 565–568 for selecting test chemicals, 508–534 questionnaire, 514 COMPUTOX, 427 Contaminant exposure field, 89–93 Contaminant mass loading, 109–110, 110(table)

Copper in acid-mine discharge fish exposure, 189–202, 209–210(table), 210 standardized aquatic microcosm toxicity evaluation, 354–365, 368–393 Currents, Long Island Sound and dredged material plume, 85–86, 89 Cyprinodon variegatus pulp plant wastewater toxicity, 161–172

D

Daphnia magna in standardized aquatic microcosms, 355–367, 368–393 structure-activity data base, 397–408 wastewater toxicity evaluation, 124–125, 125(illus)

Daphnia pulex wastewater toxicity evaluation, 177, 179(table), 180–182, 184–187 Data analyses (see Analysis of variance (ANOVA); Computer programs; Regression analyses; Sensitivity analyses; Structure-activity relationships; Uncertainty analyses)

E

data bases, 515, 529(table)

Fathead minnows (see Minnows, fathead)

Fecundity (see also Reproduction)

Ceriodaphnia dubia, 275-287, 276-277 (tables)
as chronic endpoints, 286 (table), 286-287, 296

Ferric hydroxide complex, 77

Fiducial limits

versus LC$_{50}$, 312-313, 314 (table)

Field tests
toxicity tests on salmon/trout, 194, 195

Fish (see also Bluegill sunfish; Minnows; Rainbow trout; Salmon; Silversides; Striped bass; Trout)
bio-monitoring of wastewater, 215-229
demersal species
chlordane uptake, 113-115
polychlorinated biphenyl uptake, 113-115

management of fisheries, 289
population survival, 289-299, 323-337
tests
comparative, 552, 554-555 (table)
literature review, 442-456, 448-449 (tables)
ventilatory, 215-229

Freshwater discharge
municipal wastewater, 139-157

Gene probes
chlorobenzoate catabolism, 59-68
preparation of, 61-62

Glucose turnover
stream microorganisms, 51 (table)

Graphite dust, 354-365

Groundwater solute transport
computer model of, 340-348

Halogen compounds

structure-activity relationships, 495-499

Hazard assessment
aquatic lethality data base, 442-456
and bioconcentration factor (BCF), 573-574
chemical fate/transport modeling, 339-348
parameters, 339

chemical screening, 507-534, 551-563

fish population management models, 291-299

fish toxicity, 551-563
framework for, 103-105, 104 (illus)

marine dumping, 101-117

Health risk
Food and Drug Administration
contaminant tolerance levels, 103-104

marine dumping, 101-117

Heterotrophic activity
dodecyltrimethylammonium chloride, 52-53, 56-57

Howesville Creek, Indiana, 42, 44 (illus)

Hybridization, DNA (see DNA:DNA colony hybridization)

Hydrocarbons
octanol/water partition coefficients, 470-488

QSAR model, 470-488
tadpole narcosis, 470-488, 472-473 (table)

Hypnotic agents
octanol/water partition coefficients, 475

QSAR model, 475
tadpole narcosis, 475, 476-477 (table)

Hypothesis testing, 267-268

IGC$_{50}$ (median inhibitory growth concentration)

monoaromatic chemicals, 410-422

Illinois river, 21

Industrial pollution, 60, 68 (see also Acid-mine waste; Ammunition manufacturing; Coal mine waste; Metal refinishing plant waste; Pulp and paper mill waste; Tannery waste; Textile plant waste)

Integrated Risk Information System (IRS), 115

Interagency Testing Committee
chemical selection, 507-534

Interlaboratory testing
standardized aquatic microcosms, 368-393

Intrinsic rate of population increase, 273-287
equation for, 274
Invertebrates (see also Benthic invertebrates; *Ceriodaphnia dubia; Daphnia magna; Daphnia pulex; Mussels; Sea urchin*)
toxicity data
literature review, 448-449(table)
Iron, 209–210, 210(table)

K

Ketones
octanol/water partition coefficients, 470–488
QSAR model, 470–488
tadpole narcosis, 470–488, 472–473(table)

L

Laboratory versus field data, 185
Lake Huleh, Israel, 72–77
Lakes (see also Acton Lake; Linsley Pond)
aerobic/anaerobic conditions, 72–81
chemical life of, 72–81
eutrophic, 72–81
mud–water interface in, 72–81
surfactant biodegradation, 47–50, 53–55
Latin hypercube sampling, 339–348
LC₅₀ (median lethal concentration)
estimation of
computer probit analysis of, 308–320
versus submicrobial electron transfer bioassay, 554–555
LD₅₀ (median lethal dose)
cholinesterase-inhibiting compounds
oral dose, rat, 397–408
estimation of
computer probit analysis, 303–307
Lead, 209–210(tables), 210
Lepomis macrochirus (see Bluegill sunfish)
Lethality
Ceriodaphnia dubia, 278–286
Life-cycle toxicity tests, 268–271
Light cycle
laboratory simulation of, 567
Lime
decontamination of soil, 94–100
Linsley Pond, Connecticut, 72–73, 77–79
Literature review
toxicity data
fish/invertebrates, 442–456
Log rank test, 323–337
Long Island Sound, New York, 82

M

Mathematical modeling (see also
Structure-activity relationships)
chemical environmental exposure, 339–348
cholinesterase-inhibitor toxicity, 397–408
groundwater solute transport, 339–348
interpolation of rodent toxicity, 397–408
multicompartment bioconcentration factor, 575
Maximum acceptable toxicant concentration (MATC), 269
Menidia beryllina
pulp plant wastewater toxicity, 161–172
Mesocosms
complex effluent toxicity, 233–248
oxygen production of, 242–243, 244(table)
respiration of, 242(table), 242–243
versus single-species studies, 233–248
Metabolites, chemical biodegradation of, 466
Metal refining plant waste, 273–287
Metals (see Brass dust; Cadmium; Chromium; Copper; Iron; Lead; Nickel; Silver; Zinc)
Metals, trace silver, 5–17, 209–210, 210(table)
Microcosms (see also Standardized aquatic microcosm)
freshwater
butyl benzyl phthalate toxicity, 19–39
complex effluent toxicity, 177, 179(tables), 181, 182
surfactant toxicity, 42–57
saltwater
complex effluent toxicity, 231–248
Microorganisms (see also Bacteria)
surfactant biodegradation, 41, 50–57
Microtox
critique of, 552
and toxicity of
1,4-di-substituted benzene derivatives, 424–440, 427(table)
wastewater, 141–144, 145–147(tables), 147–149, 148–149(tables), 177, 179(table), 180–182, 184–187
Middle Atlantic Bight, 105–107
Minidynamo, 575
Minnows
fathead
anilene derivatives, 491-499
effectiveness endpoint as reference
effluent, complex, 133, 135(table)
narcosis of, 491-499
nitrobenzene derivatives, 491-499
pesticides, 95, 96-97(tables), 97-100
QSAR model
aromatic amines, 491-495
nitro compounds, 491-495
wastewater toxicity, 177, 179(table), 180-182, 184-187
water versus sediment toxicity, 205-212
sheepshead
pulp plant wastewater toxicity, 161-172, 174-187, 205, 208-212, 231-248
Mitochondria, bovine heart
in vitro bioassay, 551-563
Modeling (see Mathematical modeling)
Molecular connectivity indexes (MCI), 399
Monitoring of pollution (see Biomonitoring)
Monoaromatic chemicals, 410-422
Mud-water interface
aerobic/nonaerobic lakes, 72-81
Mussels, 87, 91(table)
Mysis bahi (see Mysids)
Mysids
wastewater toxicity, 141-144, 145(table), 147-152, 148-149(tables), 161-172
Mytilus edulis, 87, 91(table)

O

Oceans
sewage disposal sites, 101-117
Octanol/water partition coefficient of alcohols, 469-470, 472-473(table)
of 1,4-di-substituted benzene
derivatives, 426
of hydrocarbons, 469-470, 472-473(table)
of ketones, 469-470, 472-473(table)
of monochromatic chemicals, 410-422
Oncorhyncus tsawytscha (see Trout, steelhead)
Organic chemicals (see also Alcohols; Anesthetics; Aromatic amines; Benzene derivates; Butyl benzyl phthalate; Carbofuran; Chemicals; Chlordane; Chlorobenzoate; Chlorpyrifos; Hydrocarbons; Ketones; Pesticides; Polychlorinated biphenyls; Surfactants; Toxaphene) total organic carbon (TOC), 123-127
Organic matter sorption of chemicals, 76-77, 79-81
Overton's classic experiments, 468-469
Oxygen in mesocosms, 243

P

PCBs (see Polychlorinated biphenyls)
Pesticides soil contamination, 94-100, 96(table)
Photosubacterium phosphoreum (see Microtox)
Photosynthesis/respiration ratio in standardized aquatic microcosm, 360-365
Phytoplankton growth and silver concentration, 17
and toxicity of chromium, 537-547
sewage effluents, 236, 241-242
silver, 6-9, 10-11, 13(table), 15-17
Pimephales promelas (see Minnows, fathead)
Plasmids, bacterial, 61-62, 64
Plumes dredged material dispersal, 82-93
Point/nonpoint pollution stream, 204-212
Policy for the Development of Water Quality-Based Toxics Control, 123

Polychaetes
 chlordane uptake, 110–113
 polychlorinated biphenyl uptake, 110–113

Polychlorinated biphenyls (PCBs)
 benthic intertebrate concentrations, 110–113
 demersal fish concentrations, 113–117
 Food and Drug Administration tolerance levels, 113
 in plume model, 87
 Probit analysis, 303–307, 308–320, 411

Pseudomonas plasmids, 61–62, 64
Pulp and paper mill waste, 159–172

QSARs (qualitative structure-activity relationships) (see Structure-activity relationships)

R

Rana temporaria
 narcosis in, 468–488, 472–473(table)
 structure-activity relationship, 468–488

Random-Walk
 groundwater solute transport model, 340–348

Rat
 as predictor of environmental toxicity, 397–408

Regression analysis
 acute/chronic toxicity endpoints, 442–456
 acute toxicity prediction, 434, 436–437(tables)
 chemical fate and transport models, 345–348
 for EC_{50} and LD_{90} values, 345–348
 life-cycle toxicity tests, 266–271
 and molecular connectivity indexes, 400–402
 structure-toxicity modeling, 411, 418–419
 and substructure keys, 400–402

Reproduction
 salmon, 251–258

Risk assessment (see Hazard assessment)
 River die-away test, 465–466

S

Sacramento River, California, 189, 190(illus)

Salinity
 computerized simulation of, 565–568
 constant versus fluctuating, 564–572
 laboratory apparatus for measurement, 565–568, 566(illus)
 and silver toxicity, 7–17
 Salmo gairdneri (see Salmon, chinook)
 Salmo salar (see Salmon, Atlantic)

Salmon
 Atlantic
 and acid-water damage, 251–258
 reproduction of, 251–258
 steroidogenesis studies, 253, 255–258
 sublethal toxicity, 251–258
 chinook
 and metal toxicity, 189–202, 195(table)
 Salt diet
 for acid-water damaged salmon, 251–258
 Saltwater discharge
 multiple toxicity studies, 158–172, 231–248
 SAS-PROBIT, 303–307, 307(table), 308–320, 411

Screening of toxic chemicals (see Structure-activity relationships)

Sea urchin
 sperm cell test, 233, 245–248

Sediments
 butyl benzyl phthalate biodegradations, 24–25, 31(table), 32–34, 34(table), 36, 38–39
 chlorobenzoate catabolism, 64
dodecyltrimethylammonium chloride biodegradation, 52–53(tables)
 Middle Atlantic Bight, 105–107
 silver concentration, 15
 stream, 204–212
 metal concentration, 209–210(tables), 210–212
 solid-phase tests, 211–212

Sensitivity analyses
 chemical fate/transfer models, 343–348

Sewage
 ocean dumping, 101–117
 treatment plant effluent toxicity, 174–187, 205, 208–212, 231–248

Sheepshead minnow
 pulp plant wastewater toxicity, 161–172
Silver
phytoplankton toxicity, 5-17
transport of, 5, 15

Silversides
pulp plant wastewater toxicity, 161-172

Sludge
ocean dumping, 101, 107-117

Smith River, Virginia, 175, 176(illus)

Soils
pesticide contamination, 94-100

Standardized aquatic microcosm (SAM), 353-367, 356(illus)
interlaboratory testing, 368-393
photosynthesis/respiration ratio, 360-365
protocol for, 371

Steroidogenesis
acid-water damaged salmon, 253, 255-258

Streams
point/nonpoint pollution, 204-212
surfactant biodegradation, 42-47, 50-53
water versus sediment biodegradation, 204-212

Striped bass
population survival, 293-297

Structure-activity relationships
assay organisms
biochemical oxygen demand, 463-465
fathead minnow, 491, 492
interspecies studies, 397-408
Microtox, 424-440
tadpole, 468-488
Tetrahymena pyriformis, 410-422, 413-416(tables)

chemicals
alcohols, 468-488
alkyl and halogen monoaromatics, 410-422; 417(table)
aromatic amines, 492-495
benzene derivatives, 424-440
biodegradation of, 459-467
cholinesterase inhibitors, 397-408
electrophiles/proelectrophiles, 495-504
hydrocarbons, 468-488
ketones, 468-488
nitro compounds, 492-495
substructures of, 533-534

Structure-biodegradation relationships, 459-467

Sublethal effects
acid-water on salmon, 251-258
silver on algae, 10-11, 13(table)

Submitochondrial particles
in vitro bioassay, 551-563
Substrates, artificial, 177

Sulfate
toxic effects on algae, 537-547
Sunfish, bluegill, 215-229

Surfactants
dodecytrimethylammonium chloride, 41-57
long-chain nonionic/anionic, 41-57

Survival tests (see also LC_{50}; LD_{50})
Breslow, 323-337
Gehan, 323-337
log rank, 323-337
maximum acceptable toxicant concentration, 289-299

T

Tadpole
narcosis in, 468-488, 472-473(table)
structure-activity relationships, 468-488

Tannery waste, 205, 208-212

Tetrahymena pyriformis
structure-activity relationships, 410-422, 413-416(tables)

Textile plant waste, 174-187

Tissue residues
in demersal fish, 111-113
in Mytilus edulis, 87
in polychaetes, 111-113

Toxaphene, 94, 96(table), 97-100

Toxic Substances Control Act (TSCA) Interagency Testing Committee, 508

Toxicity tests (see also Bioassays; Biomonitoring; Survival tests)
accelerated bioconcentration, 573-584
ASTM Standard E 729-80:192
bioconcentration factor (BCF), 573-589
chemical fractionation, 123, 144
chronic endpoints, 273-299
interlaboratory testing, 368-393
intrinsic rate of population increase, 263-271, 273-299
life-cycle toxicity tests, 263-271
maximum acceptable toxicant concentration (MATC), 269
Microtox, 554-555(table)
multispecies, 141-144, 145-147(tables), 147-152
no-effect concentration, 441-456, 446-447(tables)
Overton's classic experiments, 468-469
single species, 124-125, 125(illus)
single species versus mesocosms, 231–248
standardized aquatic microcosm (SAM), 353–367, 368–393
submitochondrial electron-transfer particle bioassay, 551–563, 554–555(table)
ventilation, fish, 215–229
water column, 211–212, 243–244
Trash dumping
stream water/sediment toxicity, 204–212
Trophic interactions
Daphnia magna and algae, 357
Trout, steelhead
metals toxicity, 189–202, 195(table)
Turbidity
after dredged material dumping, 89

U
Uncertainty analyses
chemical fate/transport, 643–648

V
Ventilatory tests
fish, 215–229

W
Wastewater *(see also* Effluents, complex)
ammunition manufacturing, 215–229
chemical fractionation studies, 123–137, 143(illus), 144, 152–154, 157
municipal, 139–157, 174–187, 273–287
toxicity case studies, 129–136
Water *(see also* Groundwater; Wastewater)
quality objectives
metal concentrations, 191
Water column test, 211–212, 243–244

Y
Yellow Creek, Kentucky, 205, 206(illus)

Z
Zinc, 189–202, 209–210(Tables), 210
Zooplankton
sewage treatment plant effluent, 236, 245