Subject Index

A

Absolute fission rates, 522
Absorbance, neutron, 206, 439
Absorbed dose, 742
Accelerator irradiations, 488
Accelerator mass spectrometry, 508
Actinide isotopes, 670
Activation cross-section analysis, 223, 235, 460, 627
Activation detectors
boron covers, 642
in European Community Countries, 627
problems, 415
radiation damage experiment in a spallation neutron source, 498
in a pressurized water reactor, 105, 121
Activation spectrometry, problems with, 415
Activity measurements (See Dosimetry)
Adjustment methods, 399, 405, 450, 460
Aluminum oxide (sapphire), 659
Amorphous structure materials, 592
Annealing of steel, 7
Applications of dosimetry (See Dosimetry)
Area monitoring, 756
ASPIS-PCA slab geometry benchmarks, 295, 324
Attenuation, fluence, 90, 642

B

Babcock & Wilcox Owners Group, 90, 155, 379
Belgium, dosimetry research and applications in, 17, 653, 710
Benchmarks (See Dosimetry, standardization)
Beryllium neutron sources, 253
Boron covers for neutron spectrum determination, 642
Boron isotopes, 699
BR3 reactor beltline materials, 17
Buffalo Reactor, 386, 535
Burn-in effects, 670
Burn-up assessment, 710

C

Calibration, 359, 653, 751
Californium-252, 223, 340
Calorimetry, 359, 742
Capsules, surveillance
Embrittlement Data Base, 553
evaluation at Hungarian power plant, 105
evaluation at Krško, Yugoslavia, power plant, 115
fluence variations and material properties, 90
neutron calculations at WWER reactor, experimental validation of, 130
neutron flux perturbation experiments, 379
Carolina Power & Light Company, 80
Cavity dosimetry (See also Dosimetry)
Babcock & Wilcox Owners Group benchmark experiment, 155
Carolina Power & Light Company
dosimetry experience, 80
ex-vessel, 147, 155, 405
in-vessel, 405
regulation, 12
track recorder reliability studies, 175
Cavity/nozzle benchmarks, 295
Ceramics, 576
Charpy data, 90, 115, 535
χ² distribution, 399
Cobalt, 720, 734
Collimation, 522
Collision probability method, 439
Color center, 206
COMPOSI computational code, 576
Compounds, radiation damage in, 598
Conduction, direct measurement, 359
Confidence intervals, 425
Constant chemistry analysis, 614
Continuum-neutron fields, 253
Convection, direct measurement, 359
Coolant-duct benchmarks, 295
Copper, 508, 515, 614
Core configuration changes, influences of, 281
Covariances, 405, 425, 434
Cross-section measurements and data validation
activation spectrometry problems, 415
amorphous structure materials, 592
Be(d,n) neutron source, 253
data problems, 261
$^{54}$Fe(n,p)$^{54}$Mn reaction in JENDL-3T, 277
high-energy neutron dosimetry, 471, 488, 498, 508
mixed-spectrum reactors, 515
$^{60}$Nb(n,n') fission spectrum, 229, 235
SPECOMP calculations of damage in compounds, 598
$^{63}$Cu(n,p)$^{63}$Ni reaction, 508
Czechoslovakia, dosimetry research and applications in, 130, 333

D

Damage prediction and analysis (See also
Embrittlement, fluence)
a priori information, usefulness of, 425
activation spectrometry problems, 415
amorphous structure materials, 592
ceramics, 576
compounds, 598
constant chemistry analysis, 614
covariances, role, 405, 425, 434
dose rate experiments in the Buffalo Reactor, 535
Embrittlement Data Base, 553
European workshop on, 549
experimental validation of calculations, 130, 139
gamma-ray-induced displacement rates, 603
global, 592
Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program of the NRC, 44, 308, 379
Li$_2$O, 598
neutron exposure in the Buffalo reactor, 386
polyatomic materials, 576
pressure vessel embrittlement surveillance in Belgium, 17
sapphire damage monitors, 659
in a spallation neutron source, 471, 488, 498, 653
SPECOMP calculations, 598
surveillance neutron dosimetry at Hungarian plant, 105
vanadium alloys, 598
Data Base Embrittlement, 553
Data consistency, 399
Data rejection, 399
Debris beds, 370
Decay data, problems encountered, 261
Der Spinner, 522
DIDO test reactor, 439
Diffusion theory, power, 314
Direct measurement, calibration problems in, 359
Discrete ordinates, 642
Displacement cross sections (See Cross section measurements and data validation)
Displacement rates, gamma-ray induced, 603
Dose rate, 197, 535 (See also Dosimetry, applications and environments)

Dosimetry
applications and environments calibration problems in direct measurement, 359
cavity (See Cavity dosimetry)
core configuration changes, influences of, 281
experimental validation of predictions, 130, 139, 165
ex-vessel, 105, 147, 155, 405
fluence estimations in a VVER-440 pressurized water reactor, 121
fluence variations and materials properties, interactions between, 90
helium production in fission reactors, 471, 488, 498, 515
high absorbed dose, 212
Hungarian power plant, 105
improvements in France, 71
in-vessel neutron dosimetry applications, 405
Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program of the ORC, 44, 308, 379
Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program of the NRC, 44, 308, 379
Medical applications, 699
multisource, 197
PAHR irradiation experiment in BR2, 370
pressure vessel embrittlement surveillance in Belgium, 17
spallation neutron spectrum, 488, 653
surveillance capsules at Kriško, Yugoslavia, power plant, 115
surveillance development and standardization in the F.R.G., 38, 165
gamma ray
benchmark studies (See Dosimetry, standardization)
displacement rate determination, 603
neutron sensitivity, 206
organic conductor, 212
remote mapping, 197
transport calculation in ex-core region, 189
materials used, 627
boron, 642
 germanium, 653
lithium fluoride, 155, 206
niobium, 71, 121, 139, 223, 245, 688
organic conductors, 212
sapphire, 659
measurement methods and devices
activation detectors, 105, 121, 415, 627, 642
adjustment methods, 399, 405
calorimetry, 359, 742
capsules (See Capsules, surveillance)
cavity (See Cavity dosimetry)
data consistency, 399
data rejection, 399
direct, calibration problems in, 359
epithermal neutron flux, 720, 726
fission foils (See Foils, fission monitoring)
importance sampling, 425
interval rule, 726
least-squares evaluation method, 340, 425
LEPRICON method, 80, 405
lithium fluoride gamma dosimetry, 155, 206
microcalorimeters, 742
n-p counters, gas filled, 348
neutron detectors, self-powered, 720, 726, 734
organic conductors, 212
photofission measurements, 189, 269
pinhole gamma camera, 197
radiation absorbed dose calorimetry, 359
remote gamma-ray mapping, 197
sensitivity, 405
spectrum (See Spectral determination)
spent fuel assemblies, neutron emission effects on, 710
threshold detectors, 415, 642
track recorders (See Track recorders, solid state)
transport calculation of gamma field in ex-core region, 189
uncertainties, 399, 405
unfolding method (See Spectra unfolding)
neutron
activation spectrometry problems, 415
Babcock & Wilcox Owners Group surveillance capsules, 90, 379
boron covers for spectrum determination, 642
Buffalo Reactor, 386, 535
burn-in effects, 670
Carolina Power & Light Company experience, 80
$\chi^2$ distribution, 399
emulsion measurements and proportional counter perturbation factors in VENUS-I, 348
exposure parameters, deviation from threshold detector measurements, 450
fast, by fission foils, 634
$^{54}$Fe($n$,p)$^{58}$Mn reaction in JENDL-3T, 277
fission spectrum averaged cross sections, 235
flux perturbation experiment, 379
gamma-induced reactions, influences of, 281
high-energy neutron dosimetry, 471, 488, 498
light-water reactors, research impact on NRC regulation of, 7
materials used, 627
measurements of niobium-93m, 245
niobium preparation, ultra-high purity, 688
personnel monitoring, 756
problems encountered, 261
sapphire, 659
self-powered, 720, 726
surveillance validation at Gundremmingen, F.R.G., 165
track recorder reliability studies, 175
ultra-high-purity niobium preparation, 688
unfolding and damage prediction with and without a priori information, 425
regulation, 7, 12 (See also Nuclear Regulatory Commission)
standardization
activity measurements on monitor foils in different laboratories, 653
Babcock & Wilcox Owners Group cavity dosimetry experiment, 155
burn-in effects, correction of, 670
cavity/nozzle, 295
Cf-252 neutron spectrum, 340
coolant duct, 295
covariances, 434
in the F.R.G., 38, 165, 340
Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program of the NRC, 44, 308, 379
NESTOR Shielding and Dosimetry Improvement Programme (NESDIP), 80, 295, 324
Oak Ridge PCA radial shield, 295
PCA/PSF, 308, 324
SEG-V benchmark system, 333
VENUS, 17, 80, 314, 348

E

Embrittlement, fluence
Belgian surveillance activities, 17
dose rate experiments in Buffalo Reactor, 535
dosimetry and regulation, 12
Embrittlement Data Base, 553
Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program of the NRC, 44, 308, 379
USA-Euratom dosimetry research, effect on NRC regulation, 7
in a VVER-440 pressurized water reactor, 121
Emulsions, nuclear research, 348
ENEA equation, 614
Energy deposition, 742
Energy spectrum (See Neutron spectrum measurements; Spectra unfolding; Spectral determination)
Epithermal neutron flux, measurement of, 720, 726
Epithermal sensitivity, 726
Erbium emitters, 720
Euratom-USA dosimetry research, effect on NRC regulation, 7
European Community Countries, materials used in neutron dosimetry, 627

F

$^{54}$Fe$(n,p)^{54}$Mn reaction, 27
$^{56}$Fe$(n,2n)^{56}$Fe reaction, 508
Federal Republic of Germany, dosimetry research and applications in, 38, 165, 425, 653
FFTF/MOTA, 479
Filtered neutron beams, 699, 720
Finland, neutron flux estimations at VVER-440 reactor, 121
Fission chain yield determination, 634
Fission damage (See Damage prediction and analysis; Embrittlement, fluence)
Fission foils (See Foils, fission monitoring)
Fission neutron dosimeters (See Dosimetry, neutron)
Fission neutron spectra, 223, 229, 235 (See also Neutron spectrum measurements)
Fission plates, 295
Fission spectrum averaged cross sections, 277
Fluence, neutron (See Neutron fluence)
Foils, fission monitoring
calibration of a neutron-driven gamma source, 751
comparisons of results in different laboratories and plants, 139, 653
fast neutron dosimetry in Belgium, 634
spallation neutron source, 488, 498
Fracture toughness data, 90, 115, 535
France, dosimetry research and applications in, 71, 576, 634, 720
Fuel assemblies, spent, neutron emission effects on, 710
Fuel pins, nuclear, 439
Fusion materials, 479, 508
Fusion studies
helium production in fission reactors, 471, 488, 498, 515
high-energy neutron dosimetry, European survey, 471
pulsed neutron fields, 522
radiation damage correlations, workshop, 549
radiation damage experiment, 498
radionuclides in fusion materials, 508
spallation neutron sources, 471, 488, 498, 653
U.S. fusion materials program, 479

G

Gadolinium, 720
Gamma and neutron calculations, 370
Gamma dosimeters, 155, 189, 197, 206, 212
Gamma fields, 751
Gamma fluence, 155, 189, 197, 281, 603
Gamma heating, 189
Gamma sensitivity, 720
Gamma sources, neutron driven, 751
Gamma spectroscopy, 508, 515, 603
Germanium detectors, 653
Germany, Federal Republic of, dosimetry research and applications in, 38, 165, 425, 653
Global damage, 592
GNASH code, 277

H

Hafnium emitters, 720
Half-life, 223
Harwell Materials Testing Reactors, 439
Heat removal, post-accident, 370
Heat transfer, 359, 742
Helium production in fission reactors, 471, 488, 498, 515
HFIR, 479
High-energy neutron dosimetry, 471, 488, 498
High-purity materials, 627, 688
History determination of nuclear reactors, 281
Hungary, surveillance neutron dosimetry in, 105, 642

I

Importance sampling, 425
Inelastic scatter cross sections, 229
Integral cross sections, 253
International Atomic Energy Agency (IAEA) Nuclear Data Section, 434
Interval rule, 726
Iodination, 688
Iron, 277, 508, 515
Irradiation test rigs, 439
Israel, dosimetry research and applications in, 399
Italy, dosimetry research and applications in, 592, 653

J

Japan, dosimetry research and applications in, 277
JENDL, 277

L

LAMPF, Los Alamos, 498, 653
Lead factor, 105
Least-squares evaluation method, 340, 425
LEPRICON method, 80, 405
License renewal of nuclear plants, 99
Life extension of nuclear plants, 99
Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program of the NRC, 44, 308, 379
Lindhard equations, 576
Liquid metal cooled reactors (See Nuclear reactors)
Liquid scintillation spectrometry, 245, 508
Lithium compounds, 576, 598
Lithium fluoride gamma dosimetry, 155, 206
Lovisa, Finland, reactors, 121
Low-leakage uranium/plutonium core, 314

M

Mass spectrometry, 508, 515
Material irradiation (See Damage prediction and analysis; Embrittlement, fluence)
Materials used in neutron dosimetry
boron, 642
germanium, 653
lithium fluoride, 155, 206
niobium, 71, 121, 139, 223, 254, 688
sapphire, 659
McBEND, NESTOR Shielding and Dosimetry Improvement Programme (NEDSIP), 80, 295
Measurement devices (See Capsules, surveillance; Dosimetry, measurement methods and devices; Foils, fission monitoring; Niobium monitors; Track recorders, solid state)
Medical applications, 699
Methods of dosimetry (See Dosimetry)
Microcalorimeters, design, 742
Monitor foils (See Foils, fission monitoring)
Monitors (See Capsules, surveillance; Dosimetry, measurement methods and devices; Foils, fission monitoring, Niobium monitors; Track recorders, solid state)
Monte Carlo method, 235, 439
Multisource dosimetry, 197

n-p counters, gas filled, 348
NESTOR Shielding and Dosimetry Improvement Programme (NEDIP), 80, 295, 324
Netherlands, application of boron covers in, 642
Neutron absorbers, 206, 439, 699
Neutron activation, 653
Neutron and gamma calculations, 370
Neutron bursts, 522
Neutron capture gamma rays, 751
Neutron cross sections (See Cross section measurement and data validation)
Neutron detectors, self-powered, 720, 726
Neutron dosimetry (See Dosimetry, neutron)
Neutron fluence
adjustment methods, 399, 405
attenuation, 90
Buffalo reactor, 386, 535
cavity dosimetry benchmark experiment, 155
χ² distribution, 399
core configuration influences, 281
cross sections at 14.8 MeV, 508
damage prediction (See Damage prediction and analysis)
embrittlement (See Embrittlement, fluence)
energy spectra (See Neutron spectrum measurements)
epithermal, 720, 726
estimations in a VVER-440 pressurized water reactor, 121
experimental validation of calculations, 130
ex-vessel neutron dosimetry applications, 147, 105, 155, 405
gamma-induced reactions, influences of, 281
in-vessel neutron dosimetry applications, 405
irradiation test rig design, 439
LEPRICON measurement method, 80, 405
niobium-93m measurements, 245
personnel monitoring, 756
perturbation experiment, 379
pulsed fields, 522
rate, 535, 710
spectrum determination (See Neutron spectrum measurements)
transition temperature shift in pressure vessel steels, 614
unfolding method (See Spectra unfolding)
USA-Euratom dosimetry research, 7
variations and materials properties, interactions between, 90
Neutron-induced reactions, 121, 253 (See also Damage prediction and analysis: Embrittlement, fluence)
Neutron irradiation (See Neutron fluence)
Neutron metrology (See Dosimetry, neutron; Neutron detectors, self-powered)
Neutron reactions, 515
Neutron sensitivity, 734
Neutron spectrum measurements (See also Dosimetry, standardization; Spectral determination)
adjustments, 450, 460
beryllium sources, 253
boron covers, 642
core configuration and gamma-induced reactions, influences of, 281
experimental validation of calculations at WWER reactor, 130, 333
filtered neutron beams, 699
helium production, 471, 498, 515
medical applications, 699
niobium monitors, 223, 229, 235, 688
personnel monitoring, 756
pulsed fields, 522
sapphire damage monitors, 659
surveillance in Hungary, 105
USA-Euratom dosimetry research, 7
Nickel and nickel isotope reactions, 508, 515, 614
Niobium cross sections, 229, 235, 515
Niobium fission measurement (See Niobium monitors)
Niobium monitors
fast neutron metrology, 245
fission spectrum cross sections, 229, 235
nuclear data for use of, 223
predictions, experimental validation of, 139
preparation and use, 139
recent improvements, 71
ultra-high-purity niobium preparation, 688
in a VVER-440 pressurized water reactor, 121
Notch toughness of pressure-vessel steel, 90, 115, 535
Nuclear decay data, 223
Nuclear environment studies (See Dosimetry)
Nuclear fuel assemblies, 439, 710
Nuclear fusion, (See Fusion studies)
Nuclear plants (See Dosimetry; Nuclear reactors; Nuclear fuel assemblies)
Nuclear reactor regulation, 12 (See also Nuclear Regulatory Commission)
Nuclear reactors (See also Damage prediction and analysis; Dosimetry: Embrittlement, fluence)
ASPIS, 295, 324
BR2, PAHR irradiation experiment in, 370
Buffalo, neutron exposure determination and dose rate, 386, 535
Carolina Power & Light Company dosimetry experience, 80
core configuration changes, influences of, 281
embrittlement surveillance in Belgium, 17
emulsion measurements and proportional counter perturbation factors in VENUS-I, 348
fast breeder, 370
fluence estimations in a VVER-440 pressurized water reactor, 121
fuel assemblies, 439, 710
gamma-induced reactions, 281, 603
Harwell materials testing, 439
helium production in 471, 488, 498, 515
Hungarian plant, surveillance neutron dosimetry practice, 105
Krško, Yugoslavia, power plant, surveillance capsule use, 115
LAMPF, Los Alamos, 498, 653
license renewal, 99
life extension, 99
Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program of the NRC, 44, 308, 379
low-leakage uranium/plutonium core, 314
Masurca facility, 634
MELUSINE, 720
National Bureau of Standards Reactor, 751
Oak Ridge National Laboratory (ORNL) Poolside Facility, 379, 603
photofission measurements, 189, 269
power distribution calculations and measurements, 314
regulation, 12
SEG-V configuration, 333
shielding (See Shielding)
SILOE, 720
standard uranium core, 314
surveillance dosimetry, recent improvements in France, 71
surveillance development and standardization in the F.R.G., 38, 165
TIHANGE I, 710
track recorder reliability studies, 175
transport calculation of gamma field in ex-core region, 189
USA-Euratom dosimetry research, effect on NRC regulation, 7
VENUS, 17, 80, 314, 348
WWER reactor, experimental validation of neutron calculations, 130
Nuclear Regulatory Commission (NRC) dose rate experiments in Buffalo Reactor, 535
dosimetry research impact on regulation of light-water reactors, 7
Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program, 44, 308, 379
pressure vessel embrittlement surveillance in Belgium, 17
Nuclear research emulsions, 348
NUMARC, 99
NUPLEX, 99

O

Oak Ridge National Laboratory (ORNL) Poolside Facility, 379
Organic conductors, 212
ORIGEN-2 point model depletion code, 710
Osiris reactor, 212

P

PCA/PSF benchmark, 308, 324
Personnel monitoring, 756
Photofission measurements, 189, 269 (See also Dosimetry)
Physical radiation effects (See Damage prediction and analysis; Embrittlement, fluence)
Pinhole gamma camera, 197
Plates, fission, 295
PLUTO test reactor, 439
Polyatomic materials, damage functions, 576
Portugal, research on self-powered neutron detectors, 726, 734
Post-accident heat removal, 370
Power distribution calculations, VENUS-I and VENUS-II, 314
Pressure vessel steels (See Damage prediction and analysis; Embrittlement, fluence; Steels, pressure vessel)
Pressure vessel surveillance dosimetry (See Dosimetry)
Pressure vessels (See Damage prediction and analysis; Embrittlement, fluence; Nuclear reactors; Steels, pressure vessel)
Pressurized thermal shock, 80
Pressurized water reactors (See Nuclear reactors)
Probability density, 425
Problems encountered in neutron metrology, 261
Prompt-capture gamma spectrum, 734
Proportional counter perturbation factors, 348
Pulsed neutron fields, 522
Purification of materials, 688

R
Radial shields, 80, 295, 324
Radiation absorbed dose, 359
Radiation effects (See Damage prediction and analysis; Embrittlement, fluence)
Radioactive sources, 197, 471, 488, 498, 653
Radioactivity in fusion materials, 508
Radiometric monitors (See Capsules, surveillance; Dosimetry, measurement methods and devices; Niobium monitors; Track recorders, solid state)
Radionuclides in fusion materials, 508
Radiotherapy, 699
RANKERN, NESTOR Shielding and Dosimetry Improvement Programme (NESDIP), 80, 295
Reactor cavity, 105 (See also Cavity dosimetry)
Reactor dosimetry (See Cavity dosimetry; Dosimetry)
Reactor Osiris, 212
Reactor pressure vessels (See Damage prediction and analysis; Embrittlement, fluence; Nuclear reactors; Steels, pressure vessel)
Reactor vessel surveillance capsules (See Capsules, surveillance)
Reactors, nuclear (See Dosimetry; Nuclear reactors; Nuclear fuel assemblies)
REPLICA configuration, 324
Rhodium emitters, 720
Rotating devices, 522
$RT_{NDT}$ temperature, 115

S
SAND-II spectrum adjustment program, 333, 460, 642
Sapphire spectrum adjustment program, 333
Scanner, automated, 676
SEG-V configuration, 333
Self-shielding correction, 726
Sensitivity, 405, 734
Shielding, radiation, 80, 130, 295, 324
Shrouding, 720
Silver emitters, 720
Spallation, 471, 488, 498, 653
Specimens, surveillance, 105, 139, 488, 498, 634
SPECTER calculations, 598
SPECTER calculations, 598
Spectra unfolding
a priori information, effect of, 425
activation spectrometry problems, 415
adjustment methods, 399
boron covers, 642
LEPRICON methodology, 405
neutron spectrum measurements in SEG-V, 333
radiation damage experiment in spallation neutron source, 498
Spectral determination, 245, 508, 515, 603, 642 (See also Dosimetry, standardization; Neutron spectrum measurements; X-ray spectrometry)
Spectrophotography, 206
Spectrum adjustments, 450, 460
Spectrum-averaged cross sections, 223
Spectrum measurements (See Dosimetry;
Neutron spectrum measurements; Standardization
Spent fuel assemblies, neutron emission effects on, 710
Spontaneous fission, 340
Standard uranium core, 314
Standardization of dosimetry (See Dosimetry, standardization)
STAY'SL unfolding code, 115, 425, 642
Steels, pressure vessel (See also Damage prediction and analysis;
Embrittlement, fluence)
A 302-B: 535
A 508: 614
A 533: 535, 614
Charpy data, 90, 115, 535
Embrittlement Data Base, 553
embrittlement surveillance in Belgium, 17
fluence variations, effects on properties, 90
transition temperature shift, 614
USA-Euratom dosimetry research, effect on NRC regulation, 7
Submerged-arc welding, 535
Surveillance capsules (See Capsules, surveillance)
Surveillance Dosimetry Improvement Program of the NRC, 7, 44, 308, 379
Surveillance specimens, 105, 139, 488, 498, 634
Switzerland, fusion research in, 488, 653

T
Tantalum, 688
Temperature treatment 688
Tension test, 535
Test reactor irradiations for fast reactors, 370
Test rigs, design of, 439
Thermal sensitivity, 726
Thermal shock, pressurized, 80
Thermocouples, 742
Threshold detector measurements, 269, 415, 450, 642
Threshold energy, 277
Time dependence and resolution, 522
Titanium, 515
Tokamak devices, 471
Total absolute delayed neutron yield determination, 634
Track counter, Westinghouse automated, 676

Track recorders, solid state
Carolina Power & Light Company experience, 80
ex-vessel monitoring, 147, 155
personnel monitoring, 756
pulsed neutron fields, observation of, 522
reliability studies, 175
Westinghouse automated track counter, 676
Transition temperature shift, 614
Transmission measurements, 370
Transmutation products, 471
Transport calculations, 165
Trend curves, 44, 308, 379
Tumors, 699
Two-dimensional neutron calculations, 130

U
Uncertainties in measurement and extrapolation, 399, 405
Unfolding (See Spectra unfolding)
United Kingdom, dosimetry research and applications in, 80, 295, 324, 439, 659
U.S. Nuclear Regulatory Commission (See Nuclear Regulatory Commission)

V
Vanadium alloys, 598
VENUS, 17, 80, 314, 348

W
Welding, submerged arc, 535

X
X-ray spectrometry
comparison of neutron dosimetry at three plants, 139
\(^{99}\)Nb\(_{(n,n')}\), 229, 235
\(^{93m}\)Nb, 245
nuclear data for niobium monitor use, 223
radionuclides, 508

Y
Yugoslavia, surveillance capsules at Krško power plant, 115